ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapfn Unicode version

Theorem elmapfn 6730
Description: A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.)
Assertion
Ref Expression
elmapfn  |-  ( A  e.  ( B  ^m  C )  ->  A  Fn  C )

Proof of Theorem elmapfn
StepHypRef Expression
1 elmapi 6729 . 2  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
2 ffn 5407 . 2  |-  ( A : C --> B  ->  A  Fn  C )
31, 2syl 14 1  |-  ( A  e.  ( B  ^m  C )  ->  A  Fn  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    Fn wfn 5253   -->wf 5254  (class class class)co 5922    ^m cmap 6707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-map 6709
This theorem is referenced by:  mapxpen  6909  peano4nninf  15617
  Copyright terms: Public domain W3C validator