ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnegz Unicode version

Theorem nnnegz 8753
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nnnegz  |-  ( N  e.  NN  ->  -u N  e.  ZZ )

Proof of Theorem nnnegz
StepHypRef Expression
1 nnre 8429 . . 3  |-  ( N  e.  NN  ->  N  e.  RR )
21renegcld 7858 . 2  |-  ( N  e.  NN  ->  -u N  e.  RR )
3 nncn 8430 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
4 negneg 7732 . . . . . 6  |-  ( N  e.  CC  ->  -u -u N  =  N )
54eleq1d 2156 . . . . 5  |-  ( N  e.  CC  ->  ( -u -u N  e.  NN  <->  N  e.  NN ) )
65biimprd 156 . . . 4  |-  ( N  e.  CC  ->  ( N  e.  NN  ->  -u -u N  e.  NN ) )
73, 6mpcom 36 . . 3  |-  ( N  e.  NN  ->  -u -u N  e.  NN )
873mix3d 1120 . 2  |-  ( N  e.  NN  ->  ( -u N  =  0  \/  -u N  e.  NN  \/  -u -u N  e.  NN ) )
9 elz 8752 . 2  |-  ( -u N  e.  ZZ  <->  ( -u N  e.  RR  /\  ( -u N  =  0  \/  -u N  e.  NN  \/  -u -u N  e.  NN ) ) )
102, 8, 9sylanbrc 408 1  |-  ( N  e.  NN  ->  -u N  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 923    = wceq 1289    e. wcel 1438   CCcc 7348   RRcr 7349   0cc0 7350   -ucneg 7654   NNcn 8422   ZZcz 8750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7655  df-neg 7656  df-inn 8423  df-z 8751
This theorem is referenced by:  znegcl  8781  neg1z  8782  zeo  8851  btwnz  8865  expaddzaplem  9998
  Copyright terms: Public domain W3C validator