ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnegz Unicode version

Theorem nnnegz 9215
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nnnegz  |-  ( N  e.  NN  ->  -u N  e.  ZZ )

Proof of Theorem nnnegz
StepHypRef Expression
1 nnre 8885 . . 3  |-  ( N  e.  NN  ->  N  e.  RR )
21renegcld 8299 . 2  |-  ( N  e.  NN  ->  -u N  e.  RR )
3 nncn 8886 . . . 4  |-  ( N  e.  NN  ->  N  e.  CC )
4 negneg 8169 . . . . . 6  |-  ( N  e.  CC  ->  -u -u N  =  N )
54eleq1d 2239 . . . . 5  |-  ( N  e.  CC  ->  ( -u -u N  e.  NN  <->  N  e.  NN ) )
65biimprd 157 . . . 4  |-  ( N  e.  CC  ->  ( N  e.  NN  ->  -u -u N  e.  NN ) )
73, 6mpcom 36 . . 3  |-  ( N  e.  NN  ->  -u -u N  e.  NN )
873mix3d 1169 . 2  |-  ( N  e.  NN  ->  ( -u N  =  0  \/  -u N  e.  NN  \/  -u -u N  e.  NN ) )
9 elz 9214 . 2  |-  ( -u N  e.  ZZ  <->  ( -u N  e.  RR  /\  ( -u N  =  0  \/  -u N  e.  NN  \/  -u -u N  e.  NN ) ) )
102, 8, 9sylanbrc 415 1  |-  ( N  e.  NN  ->  -u N  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 972    = wceq 1348    e. wcel 2141   CCcc 7772   RRcr 7773   0cc0 7774   -ucneg 8091   NNcn 8878   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093  df-inn 8879  df-z 9213
This theorem is referenced by:  znegcl  9243  neg1z  9244  zeo  9317  btwnz  9331  expaddzaplem  10519
  Copyright terms: Public domain W3C validator