ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addmodlteq Unicode version

Theorem addmodlteq 10384
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
addmodlteq  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  I  =  J
) )

Proof of Theorem addmodlteq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10133 . . . . . . . 8  |-  ( I  e.  ( 0..^ N )  ->  I  e.  ZZ )
213ad2ant1 1018 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  I  e.  ZZ )
3 zq 9615 . . . . . . 7  |-  ( I  e.  ZZ  ->  I  e.  QQ )
42, 3syl 14 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  I  e.  QQ )
5 simp3 999 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  S  e.  ZZ )
6 zq 9615 . . . . . . 7  |-  ( S  e.  ZZ  ->  S  e.  QQ )
75, 6syl 14 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  S  e.  QQ )
8 elfzo0 10168 . . . . . . . . . 10  |-  ( I  e.  ( 0..^ N )  <->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
98biimpi 120 . . . . . . . . 9  |-  ( I  e.  ( 0..^ N )  ->  ( I  e.  NN0  /\  N  e.  NN  /\  I  < 
N ) )
1093ad2ant1 1018 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  e. 
NN0  /\  N  e.  NN  /\  I  <  N
) )
1110simp2d 1010 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  NN )
12 nnq 9622 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
1311, 12syl 14 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  QQ )
1411nngt0d 8952 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  0  <  N
)
15 modqaddmod 10349 . . . . . 6  |-  ( ( ( I  e.  QQ  /\  S  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( I  mod  N )  +  S )  mod  N
)  =  ( ( I  +  S )  mod  N ) )
164, 7, 13, 14, 15syl22anc 1239 . . . . 5  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  mod  N )  +  S )  mod 
N )  =  ( ( I  +  S
)  mod  N )
)
1716eqcomd 2183 . . . 4  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( I  +  S )  mod 
N )  =  ( ( ( I  mod  N )  +  S )  mod  N ) )
18 elfzoelz 10133 . . . . . . . 8  |-  ( J  e.  ( 0..^ N )  ->  J  e.  ZZ )
19183ad2ant2 1019 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  J  e.  ZZ )
20 zq 9615 . . . . . . 7  |-  ( J  e.  ZZ  ->  J  e.  QQ )
2119, 20syl 14 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  J  e.  QQ )
22 modqaddmod 10349 . . . . . 6  |-  ( ( ( J  e.  QQ  /\  S  e.  QQ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( ( J  mod  N )  +  S )  mod  N
)  =  ( ( J  +  S )  mod  N ) )
2321, 7, 13, 14, 22syl22anc 1239 . . . . 5  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( J  mod  N )  +  S )  mod 
N )  =  ( ( J  +  S
)  mod  N )
)
2423eqcomd 2183 . . . 4  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( J  +  S )  mod 
N )  =  ( ( ( J  mod  N )  +  S )  mod  N ) )
2517, 24eqeq12d 2192 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  ( ( ( I  mod  N )  +  S )  mod 
N )  =  ( ( ( J  mod  N )  +  S )  mod  N ) ) )
262, 11zmodcld 10331 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  mod  N )  e.  NN0 )
2726nn0zd 9362 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  mod  N )  e.  ZZ )
2827, 5zaddcld 9368 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( I  mod  N )  +  S )  e.  ZZ )
2928, 11zmodcld 10331 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  mod  N )  +  S )  mod 
N )  e.  NN0 )
3029nn0cnd 9220 . . . . 5  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  mod  N )  +  S )  mod 
N )  e.  CC )
3119, 11zmodcld 10331 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  mod  N )  e.  NN0 )
3231nn0zd 9362 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  mod  N )  e.  ZZ )
3332, 5zaddcld 9368 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( J  mod  N )  +  S )  e.  ZZ )
3433, 11zmodcld 10331 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( J  mod  N )  +  S )  mod 
N )  e.  NN0 )
3534nn0cnd 9220 . . . . 5  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( J  mod  N )  +  S )  mod 
N )  e.  CC )
3630, 35subeq0ad 8268 . . . 4  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( I  mod  N )  +  S )  mod  N )  -  ( ( ( J  mod  N )  +  S )  mod  N
) )  =  0  <-> 
( ( ( I  mod  N )  +  S )  mod  N
)  =  ( ( ( J  mod  N
)  +  S )  mod  N ) ) )
37 oveq1 5876 . . . . 5  |-  ( ( ( ( ( I  mod  N )  +  S )  mod  N
)  -  ( ( ( J  mod  N
)  +  S )  mod  N ) )  =  0  ->  (
( ( ( ( I  mod  N )  +  S )  mod 
N )  -  (
( ( J  mod  N )  +  S )  mod  N ) )  mod  N )  =  ( 0  mod  N
) )
384, 13, 14modqcld 10314 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  mod  N )  e.  QQ )
39 qaddcl 9624 . . . . . . . . . 10  |-  ( ( ( I  mod  N
)  e.  QQ  /\  S  e.  QQ )  ->  ( ( I  mod  N )  +  S )  e.  QQ )
4038, 7, 39syl2anc 411 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( I  mod  N )  +  S )  e.  QQ )
4121, 13, 14modqcld 10314 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  mod  N )  e.  QQ )
42 qaddcl 9624 . . . . . . . . . 10  |-  ( ( ( J  mod  N
)  e.  QQ  /\  S  e.  QQ )  ->  ( ( J  mod  N )  +  S )  e.  QQ )
4341, 7, 42syl2anc 411 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( J  mod  N )  +  S )  e.  QQ )
44 modqsubmodmod 10369 . . . . . . . . 9  |-  ( ( ( ( ( I  mod  N )  +  S )  e.  QQ  /\  ( ( J  mod  N )  +  S )  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  ->  ( (
( ( ( I  mod  N )  +  S )  mod  N
)  -  ( ( ( J  mod  N
)  +  S )  mod  N ) )  mod  N )  =  ( ( ( ( I  mod  N )  +  S )  -  ( ( J  mod  N )  +  S ) )  mod  N ) )
4540, 43, 13, 14, 44syl22anc 1239 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( I  mod  N )  +  S )  mod  N )  -  ( ( ( J  mod  N )  +  S )  mod  N
) )  mod  N
)  =  ( ( ( ( I  mod  N )  +  S )  -  ( ( J  mod  N )  +  S ) )  mod 
N ) )
4626nn0cnd 9220 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  mod  N )  e.  CC )
4731nn0cnd 9220 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  mod  N )  e.  CC )
485zcnd 9365 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  S  e.  CC )
4946, 47, 48pnpcan2d 8296 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  mod  N )  +  S )  -  ( ( J  mod  N )  +  S ) )  =  ( ( I  mod  N )  -  ( J  mod  N ) ) )
5049oveq1d 5884 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( I  mod  N
)  +  S )  -  ( ( J  mod  N )  +  S ) )  mod 
N )  =  ( ( ( I  mod  N )  -  ( J  mod  N ) )  mod  N ) )
5145, 50eqtrd 2210 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( I  mod  N )  +  S )  mod  N )  -  ( ( ( J  mod  N )  +  S )  mod  N
) )  mod  N
)  =  ( ( ( I  mod  N
)  -  ( J  mod  N ) )  mod  N ) )
52 q0mod 10341 . . . . . . . 8  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
5313, 14, 52syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( 0  mod 
N )  =  0 )
5451, 53eqeq12d 2192 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( ( I  mod  N )  +  S )  mod  N
)  -  ( ( ( J  mod  N
)  +  S )  mod  N ) )  mod  N )  =  ( 0  mod  N
)  <->  ( ( ( I  mod  N )  -  ( J  mod  N ) )  mod  N
)  =  0 ) )
55 zmodidfzoimp 10340 . . . . . . . . . . 11  |-  ( I  e.  ( 0..^ N )  ->  ( I  mod  N )  =  I )
56553ad2ant1 1018 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  mod  N )  =  I )
57 zmodidfzoimp 10340 . . . . . . . . . . 11  |-  ( J  e.  ( 0..^ N )  ->  ( J  mod  N )  =  J )
58573ad2ant2 1019 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  mod  N )  =  J )
5956, 58oveq12d 5887 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( I  mod  N )  -  ( J  mod  N ) )  =  ( I  -  J ) )
6059oveq1d 5884 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  mod  N )  -  ( J  mod  N ) )  mod  N
)  =  ( ( I  -  J )  mod  N ) )
6160eqeq1d 2186 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( I  mod  N
)  -  ( J  mod  N ) )  mod  N )  =  0  <->  ( ( I  -  J )  mod 
N )  =  0 ) )
62 qsubcl 9627 . . . . . . . . . 10  |-  ( ( I  e.  QQ  /\  J  e.  QQ )  ->  ( I  -  J
)  e.  QQ )
634, 21, 62syl2anc 411 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  -  J )  e.  QQ )
64 modq0 10315 . . . . . . . . 9  |-  ( ( ( I  -  J
)  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( ( I  -  J )  mod  N
)  =  0  <->  (
( I  -  J
)  /  N )  e.  ZZ ) )
6563, 13, 14, 64syl3anc 1238 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  -  J )  mod  N )  =  0  <->  ( ( I  -  J )  /  N )  e.  ZZ ) )
662, 19zsubcld 9369 . . . . . . . . . 10  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( I  -  J )  e.  ZZ )
67 zdiv 9330 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( I  -  J
)  e.  ZZ )  ->  ( E. k  e.  ZZ  ( N  x.  k )  =  ( I  -  J )  <-> 
( ( I  -  J )  /  N
)  e.  ZZ ) )
6811, 66, 67syl2anc 411 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( E. k  e.  ZZ  ( N  x.  k )  =  ( I  -  J )  <-> 
( ( I  -  J )  /  N
)  e.  ZZ ) )
69 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  k  = 
0 )
7069oveq2d 5885 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( N  x.  k )  =  ( N  x.  0 ) )
7111nncnd 8922 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  CC )
7271mul01d 8340 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( N  x.  0 )  =  0 )
7372ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( N  x.  0 )  =  0 )
7470, 73eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( N  x.  k )  =  0 )
7574eqeq1d 2186 . . . . . . . . . . . . . . 15  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( ( N  x.  k )  =  ( I  -  J )  <->  0  =  ( I  -  J
) ) )
76 eqcom 2179 . . . . . . . . . . . . . . . 16  |-  ( 0  =  ( I  -  J )  <->  ( I  -  J )  =  0 )
7710simp1d 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  I  e.  NN0 )
7877ad2antrr 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  I  e.  NN0 )
7978nn0cnd 9220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  I  e.  CC )
80 elfzo0 10168 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  ( 0..^ N )  <->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
8180biimpi 120 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( J  e.  ( 0..^ N )  ->  ( J  e.  NN0  /\  N  e.  NN  /\  J  < 
N ) )
82813ad2ant2 1019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( J  e. 
NN0  /\  N  e.  NN  /\  J  <  N
) )
8382simp1d 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  J  e.  NN0 )
8483ad2antrr 488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  J  e.  NN0 )
8584nn0cnd 9220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  J  e.  CC )
8679, 85subeq0ad 8268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( (
I  -  J )  =  0  <->  I  =  J ) )
8786biimpd 144 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( (
I  -  J )  =  0  ->  I  =  J ) )
8876, 87biimtrid 152 . . . . . . . . . . . . . . 15  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( 0  =  ( I  -  J )  ->  I  =  J ) )
8975, 88sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  ->  ( ( N  x.  k )  =  ( I  -  J )  ->  I  =  J ) )
9089imp 124 . . . . . . . . . . . . 13  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  k  =  0 )  /\  ( N  x.  k )  =  ( I  -  J
) )  ->  I  =  J )
9190an32s 568 . . . . . . . . . . . 12  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  =  0 )  ->  I  =  J )
92 subfzo0 10228 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N ) )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )
93923adant3 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( -u N  <  ( I  -  J
)  /\  ( I  -  J )  <  N
) )
9493ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
)
9594simprd 114 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  (
I  -  J )  <  N )
96 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  ( N  x.  k )  =  ( I  -  J ) )
9771mulid1d 7965 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( N  x.  1 )  =  N )
9897ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  ( N  x.  1 )  =  N )
9995, 96, 983brtr4d 4032 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  ( N  x.  k )  <  ( N  x.  1 ) )
100 simpllr 534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
101100zred 9364 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  k  e.  RR )
102 1red 7963 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  1  e.  RR )
10311nnrpd 9681 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  RR+ )
104103ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  N  e.  RR+ )
105101, 102, 104ltmul2d 9726 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  (
k  <  1  <->  ( N  x.  k )  <  ( N  x.  1 ) ) )
10699, 105mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  k  <  1 )
107 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  k  e.  NN )
108107nnge1d 8951 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  1  <_  k )
109102, 101, 108lensymd 8069 . . . . . . . . . . . . 13  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  -.  k  <  1 )
110106, 109pm2.21dd 620 . . . . . . . . . . . 12  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  k  e.  NN )  ->  I  =  J )
11193ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( -u N  <  ( I  -  J )  /\  ( I  -  J
)  <  N )
)
112111simpld 112 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  -u N  <  ( I  -  J
) )
113 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  k )  =  ( I  -  J ) )
114112, 113breqtrrd 4028 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  -u N  <  ( N  x.  k
) )
11511nnzd 9363 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  ZZ )
116115adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
117 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
118116, 117zmulcld 9370 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  ( N  x.  k )  e.  ZZ )
119118zred 9364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  ( N  x.  k )  e.  RR )
120119ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  k )  e.  RR )
12111nnred 8921 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  RR )
122121ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  N  e.  RR )
123120, 122possumd 8516 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
0  <  ( ( N  x.  k )  +  N )  <->  -u N  < 
( N  x.  k
) ) )
124114, 123mpbird 167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  0  <  ( ( N  x.  k )  +  N
) )
12597eqcomd 2183 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  =  ( N  x.  1 ) )
126125oveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( N  x.  k )  +  N )  =  ( ( N  x.  k
)  +  ( N  x.  1 ) ) )
127126ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
( N  x.  k
)  +  N )  =  ( ( N  x.  k )  +  ( N  x.  1 ) ) )
12871ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  N  e.  CC )
129117zcnd 9365 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  k  e.  CC )
130129ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  k  e.  CC )
131 1cnd 7964 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  1  e.  CC )
132128, 130, 131adddid 7972 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  ( k  +  1 ) )  =  ( ( N  x.  k )  +  ( N  x.  1 ) ) )
133127, 132eqtr4d 2213 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
( N  x.  k
)  +  N )  =  ( N  x.  ( k  +  1 ) ) )
134124, 133breqtrd 4026 . . . . . . . . . . . . 13  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  0  <  ( N  x.  (
k  +  1 ) ) )
135117peano2zd 9367 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  +  1 )  e.  ZZ )
136116, 135zmulcld 9370 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  ( N  x.  ( k  +  1 ) )  e.  ZZ )
137136zred 9364 . . . . . . . . . . . . . . 15  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  ( N  x.  ( k  +  1 ) )  e.  RR )
138137ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  ( k  +  1 ) )  e.  RR )
139 0red 7949 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  0  e.  RR )
14071adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  N  e.  CC )
141135zcnd 9365 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  +  1 )  e.  CC )
142140, 141mulcomd 7969 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  ( N  x.  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  N ) )
143142ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  N ) )
144135zred 9364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  +  1 )  e.  RR )
145144ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
k  +  1 )  e.  RR )
146 zcn 9247 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ZZ  ->  k  e.  CC )
147 1cnd 7964 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ZZ  ->  1  e.  CC )
148146, 147addcomd 8098 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  (
k  +  1 )  =  ( 1  +  k ) )
149147, 146subnegd 8265 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ZZ  ->  (
1  -  -u k
)  =  ( 1  +  k ) )
150148, 149eqtr4d 2213 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
k  +  1 )  =  ( 1  - 
-u k ) )
151150ad3antlr 493 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
k  +  1 )  =  ( 1  - 
-u k ) )
152 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  -u k  e.  NN )
153152nnge1d 8951 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  1  <_ 
-u k )
154 1red 7963 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  1  e.  RR )
155152nnred 8921 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  -u k  e.  RR )
156154, 155suble0d 8483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
( 1  -  -u k
)  <_  0  <->  1  <_  -u k ) )
157153, 156mpbird 167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
1  -  -u k
)  <_  0 )
158151, 157eqbrtrd 4022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
k  +  1 )  <_  0 )
15911nnnn0d 9218 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  N  e.  NN0 )
160159nn0ge0d 9221 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  0  <_  N
)
161160ad3antrrr 492 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  0  <_  N )
162 mulle0r 8890 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  +  1 )  e.  RR  /\  N  e.  RR )  /\  ( ( k  +  1 )  <_ 
0  /\  0  <_  N ) )  ->  (
( k  +  1 )  x.  N )  <_  0 )
163145, 122, 158, 161, 162syl22anc 1239 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  (
( k  +  1 )  x.  N )  <_  0 )
164143, 163eqbrtrd 4022 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  ( N  x.  ( k  +  1 ) )  <_  0 )
165138, 139, 164lensymd 8069 . . . . . . . . . . . . 13  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  -.  0  <  ( N  x.  ( k  +  1 ) ) )
166134, 165pm2.21dd 620 . . . . . . . . . . . 12  |-  ( ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  /\  -u k  e.  NN )  ->  I  =  J )
167 elz 9244 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  <->  ( k  e.  RR  /\  ( k  =  0  \/  k  e.  NN  \/  -u k  e.  NN ) ) )
168167simprbi 275 . . . . . . . . . . . . 13  |-  ( k  e.  ZZ  ->  (
k  =  0  \/  k  e.  NN  \/  -u k  e.  NN ) )
169168ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  ->  ( k  =  0  \/  k  e.  NN  \/  -u k  e.  NN ) )
17091, 110, 166, 169mpjao3dan 1307 . . . . . . . . . . 11  |-  ( ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  /\  ( N  x.  k )  =  ( I  -  J ) )  ->  I  =  J )
171170ex 115 . . . . . . . . . 10  |-  ( ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  /\  k  e.  ZZ )  ->  (
( N  x.  k
)  =  ( I  -  J )  ->  I  =  J )
)
172171rexlimdva 2594 . . . . . . . . 9  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( E. k  e.  ZZ  ( N  x.  k )  =  ( I  -  J )  ->  I  =  J ) )
17368, 172sylbird 170 . . . . . . . 8  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  -  J )  /  N )  e.  ZZ  ->  I  =  J ) )
17465, 173sylbid 150 . . . . . . 7  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  -  J )  mod  N )  =  0  ->  I  =  J ) )
17561, 174sylbid 150 . . . . . 6  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( I  mod  N
)  -  ( J  mod  N ) )  mod  N )  =  0  ->  I  =  J ) )
17654, 175sylbid 150 . . . . 5  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( ( I  mod  N )  +  S )  mod  N
)  -  ( ( ( J  mod  N
)  +  S )  mod  N ) )  mod  N )  =  ( 0  mod  N
)  ->  I  =  J ) )
17737, 176syl5 32 . . . 4  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( ( I  mod  N )  +  S )  mod  N )  -  ( ( ( J  mod  N )  +  S )  mod  N
) )  =  0  ->  I  =  J ) )
17836, 177sylbird 170 . . 3  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( ( I  mod  N
)  +  S )  mod  N )  =  ( ( ( J  mod  N )  +  S )  mod  N
)  ->  I  =  J ) )
17925, 178sylbid 150 . 2  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  ->  I  =  J ) )
180 oveq1 5876 . . 3  |-  ( I  =  J  ->  (
I  +  S )  =  ( J  +  S ) )
181180oveq1d 5884 . 2  |-  ( I  =  J  ->  (
( I  +  S
)  mod  N )  =  ( ( J  +  S )  mod 
N ) )
182179, 181impbid1 142 1  |-  ( ( I  e.  ( 0..^ N )  /\  J  e.  ( 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S )  mod  N
)  <->  I  =  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   -ucneg 8119    / cdiv 8618   NNcn 8908   NN0cn0 9165   ZZcz 9242   QQcq 9608   RR+crp 9640  ..^cfzo 10128    mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator