| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | Unicode version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8107 |
. 2
| |
| 2 | eqid 2207 |
. . 3
| |
| 3 | 2 | 3mix1i 1172 |
. 2
|
| 4 | elz 9409 |
. 2
| |
| 5 | 1, 3, 4 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 df-z 9408 |
| This theorem is referenced by: 0zd 9419 nn0ssz 9425 znegcl 9438 nnnle0 9456 zgt0ge1 9466 nn0n0n1ge2b 9487 nn0lt10b 9488 nnm1ge0 9494 gtndiv 9503 msqznn 9508 zeo 9513 nn0ind 9522 fnn0ind 9524 nn0uz 9718 1eluzge0 9730 elnn0dc 9767 eqreznegel 9770 qreccl 9798 qdivcl 9799 irrmul 9803 irrmulap 9804 fz10 10203 fz01en 10210 fzpreddisj 10228 fzshftral 10265 fznn0 10270 fz1ssfz0 10274 fz0sn 10278 fz0tp 10279 fz0to3un2pr 10280 fz0to4untppr 10281 elfz0ubfz0 10282 1fv 10296 fzo0n 10325 lbfzo0 10342 elfzonlteqm1 10376 fzo01 10382 fzo0to2pr 10384 fzo0to3tp 10385 flqge0nn0 10473 divfl0 10476 btwnzge0 10480 modqmulnn 10524 zmodfz 10528 modqid 10531 zmodid2 10534 q0mod 10537 modqmuladdnn0 10550 frecfzennn 10608 xnn0nnen 10619 qexpclz 10742 qsqeqor 10832 facdiv 10920 bcval 10931 bcnn 10939 bcm1k 10942 bcval5 10945 bcpasc 10948 4bc2eq6 10956 hashinfom 10960 iswrd 11033 iswrdiz 11038 wrdexg 11042 wrdfin 11050 wrdnval 11061 wrdred1hash 11074 lsw0 11078 ccatsymb 11096 s111 11123 ccat1st1st 11131 fzowrddc 11138 swrdlen 11143 swrdnd 11150 swrdwrdsymbg 11155 swrds1 11159 pfxval 11165 pfx00g 11166 pfx0g 11167 fnpfx 11168 pfxlen 11176 swrdccatin1 11216 swrdccat 11226 swrdccat3blem 11230 rexfiuz 11415 qabsor 11501 nn0abscl 11511 nnabscl 11526 climz 11718 climaddc1 11755 climmulc2 11757 climsubc1 11758 climsubc2 11759 climlec2 11767 binomlem 11909 binom 11910 bcxmas 11915 arisum2 11925 explecnv 11931 ef0lem 12086 dvdsval2 12216 dvdsdc 12224 moddvds 12225 dvds0 12232 0dvds 12237 zdvdsdc 12238 dvdscmulr 12246 dvdsmulcr 12247 fsumdvds 12268 dvdslelemd 12269 dvdsabseq 12273 divconjdvds 12275 alzdvds 12280 fzo0dvdseq 12283 odd2np1lem 12298 bitsfzo 12381 bitsmod 12382 0bits 12385 m1bits 12386 bitsinv1lem 12387 bitsinv1 12388 gcdmndc 12391 gcdsupex 12393 gcdsupcl 12394 gcd0val 12396 gcddvds 12399 gcd0id 12415 gcdid0 12416 gcdid 12422 bezoutlema 12435 bezoutlemb 12436 bezoutlembi 12441 dfgcd3 12446 dfgcd2 12450 gcdmultiplez 12457 dvdssq 12467 algcvgblem 12486 lcmmndc 12499 lcm0val 12502 dvdslcm 12506 lcmeq0 12508 lcmgcd 12515 lcmdvds 12516 lcmid 12517 3lcm2e6woprm 12523 6lcm4e12 12524 cncongr2 12541 sqrt2irrap 12617 dfphi2 12657 phiprmpw 12659 crth 12661 phimullem 12662 eulerthlemfi 12665 hashgcdeq 12677 phisum 12678 pceu 12733 pcdiv 12740 pc0 12742 pcqdiv 12745 pcexp 12747 pcxnn0cl 12748 pcxcl 12749 pcxqcl 12750 pcdvdstr 12765 dvdsprmpweqnn 12774 pcaddlem 12777 pcadd 12778 pcfaclem 12787 qexpz 12790 zgz 12811 igz 12812 4sqlem19 12847 ennnfonelemjn 12888 ennnfonelem1 12893 mulg0 13576 subgmulg 13639 zring0 14477 zndvds0 14527 znf1o 14528 znfi 14532 znhash 14533 psr1clfi 14565 plycolemc 15345 rpcxp0 15485 0sgm 15572 1sgmprm 15581 lgslem2 15593 lgsfcl2 15598 lgs0 15605 lgsneg 15616 lgsdilem 15619 lgsdir2lem3 15622 lgsdir 15627 lgsdilem2 15628 lgsdi 15629 lgsne0 15630 lgsprme0 15634 lgsdirnn0 15639 lgsdinn0 15640 apdifflemr 16188 apdiff 16189 iswomni0 16192 nconstwlpolem 16206 |
| Copyright terms: Public domain | W3C validator |