| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | Unicode version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8142 |
. 2
| |
| 2 | eqid 2229 |
. . 3
| |
| 3 | 2 | 3mix1i 1193 |
. 2
|
| 4 | elz 9444 |
. 2
| |
| 5 | 1, 3, 4 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 df-z 9443 |
| This theorem is referenced by: 0zd 9454 nn0ssz 9460 znegcl 9473 nnnle0 9491 zgt0ge1 9501 nn0n0n1ge2b 9522 nn0lt10b 9523 nnm1ge0 9529 gtndiv 9538 msqznn 9543 zeo 9548 nn0ind 9557 fnn0ind 9559 nn0uz 9753 1eluzge0 9765 elnn0dc 9802 eqreznegel 9805 qreccl 9833 qdivcl 9834 irrmul 9838 irrmulap 9839 fz10 10238 fz01en 10245 fzpreddisj 10263 fzshftral 10300 fznn0 10305 fz1ssfz0 10309 fz0sn 10313 fz0tp 10314 fz0to3un2pr 10315 fz0to4untppr 10316 elfz0ubfz0 10317 1fv 10331 fzo0n 10360 lbfzo0 10377 elfzonlteqm1 10411 fzo01 10417 fzo0to2pr 10419 fzo0to3tp 10420 flqge0nn0 10508 divfl0 10511 btwnzge0 10515 modqmulnn 10559 zmodfz 10563 modqid 10566 zmodid2 10569 q0mod 10572 modqmuladdnn0 10585 frecfzennn 10643 xnn0nnen 10654 qexpclz 10777 qsqeqor 10867 facdiv 10955 bcval 10966 bcnn 10974 bcm1k 10977 bcval5 10980 bcpasc 10983 4bc2eq6 10991 hashinfom 10995 iswrd 11068 iswrdiz 11073 wrdexg 11077 wrdfin 11085 wrdnval 11097 wrdred1hash 11110 lsw0 11114 ccatsymb 11132 s111 11159 ccat1st1st 11167 fzowrddc 11174 swrdlen 11179 swrdnd 11186 swrdwrdsymbg 11191 swrds1 11195 pfxval 11201 pfx00g 11202 pfx0g 11203 fnpfx 11204 pfxlen 11212 swrdccatin1 11252 swrdccat 11262 swrdccat3blem 11266 rexfiuz 11495 qabsor 11581 nn0abscl 11591 nnabscl 11606 climz 11798 climaddc1 11835 climmulc2 11837 climsubc1 11838 climsubc2 11839 climlec2 11847 binomlem 11989 binom 11990 bcxmas 11995 arisum2 12005 explecnv 12011 ef0lem 12166 dvdsval2 12296 dvdsdc 12304 moddvds 12305 dvds0 12312 0dvds 12317 zdvdsdc 12318 dvdscmulr 12326 dvdsmulcr 12327 fsumdvds 12348 dvdslelemd 12349 dvdsabseq 12353 divconjdvds 12355 alzdvds 12360 fzo0dvdseq 12363 odd2np1lem 12378 bitsfzo 12461 bitsmod 12462 0bits 12465 m1bits 12466 bitsinv1lem 12467 bitsinv1 12468 gcdmndc 12471 gcdsupex 12473 gcdsupcl 12474 gcd0val 12476 gcddvds 12479 gcd0id 12495 gcdid0 12496 gcdid 12502 bezoutlema 12515 bezoutlemb 12516 bezoutlembi 12521 dfgcd3 12526 dfgcd2 12530 gcdmultiplez 12537 dvdssq 12547 algcvgblem 12566 lcmmndc 12579 lcm0val 12582 dvdslcm 12586 lcmeq0 12588 lcmgcd 12595 lcmdvds 12596 lcmid 12597 3lcm2e6woprm 12603 6lcm4e12 12604 cncongr2 12621 sqrt2irrap 12697 dfphi2 12737 phiprmpw 12739 crth 12741 phimullem 12742 eulerthlemfi 12745 hashgcdeq 12757 phisum 12758 pceu 12813 pcdiv 12820 pc0 12822 pcqdiv 12825 pcexp 12827 pcxnn0cl 12828 pcxcl 12829 pcxqcl 12830 pcdvdstr 12845 dvdsprmpweqnn 12854 pcaddlem 12857 pcadd 12858 pcfaclem 12867 qexpz 12870 zgz 12891 igz 12892 4sqlem19 12927 ennnfonelemjn 12968 ennnfonelem1 12973 mulg0 13657 subgmulg 13720 zring0 14558 zndvds0 14608 znf1o 14609 znfi 14613 znhash 14614 psr1clfi 14646 plycolemc 15426 rpcxp0 15566 0sgm 15653 1sgmprm 15662 lgslem2 15674 lgsfcl2 15679 lgs0 15686 lgsneg 15697 lgsdilem 15700 lgsdir2lem3 15703 lgsdir 15708 lgsdilem2 15709 lgsdi 15710 lgsne0 15711 lgsprme0 15715 lgsdirnn0 15720 lgsdinn0 15721 apdifflemr 16374 apdiff 16375 iswomni0 16378 nconstwlpolem 16392 |
| Copyright terms: Public domain | W3C validator |