| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | Unicode version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 |
. 2
| |
| 2 | eqid 2204 |
. . 3
| |
| 3 | 2 | 3mix1i 1171 |
. 2
|
| 4 | elz 9373 |
. 2
| |
| 5 | 1, 3, 4 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-neg 8245 df-z 9372 |
| This theorem is referenced by: 0zd 9383 nn0ssz 9389 znegcl 9402 nnnle0 9420 zgt0ge1 9430 nn0n0n1ge2b 9451 nn0lt10b 9452 nnm1ge0 9458 gtndiv 9467 msqznn 9472 zeo 9477 nn0ind 9486 fnn0ind 9488 nn0uz 9682 1eluzge0 9694 elnn0dc 9731 eqreznegel 9734 qreccl 9762 qdivcl 9763 irrmul 9767 irrmulap 9768 fz10 10167 fz01en 10174 fzpreddisj 10192 fzshftral 10229 fznn0 10234 fz1ssfz0 10238 fz0sn 10242 fz0tp 10243 fz0to3un2pr 10244 fz0to4untppr 10245 elfz0ubfz0 10246 1fv 10260 lbfzo0 10303 elfzonlteqm1 10337 fzo01 10343 fzo0to2pr 10345 fzo0to3tp 10346 flqge0nn0 10434 divfl0 10437 btwnzge0 10441 modqmulnn 10485 zmodfz 10489 modqid 10492 zmodid2 10495 q0mod 10498 modqmuladdnn0 10511 frecfzennn 10569 xnn0nnen 10580 qexpclz 10703 qsqeqor 10793 facdiv 10881 bcval 10892 bcnn 10900 bcm1k 10903 bcval5 10906 bcpasc 10909 4bc2eq6 10917 hashinfom 10921 iswrd 10994 iswrdiz 10999 wrdexg 11003 wrdfin 11011 wrdnval 11022 wrdred1hash 11035 lsw0 11039 ccatsymb 11056 s111 11083 ccat1st1st 11091 rexfiuz 11271 qabsor 11357 nn0abscl 11367 nnabscl 11382 climz 11574 climaddc1 11611 climmulc2 11613 climsubc1 11614 climsubc2 11615 climlec2 11623 binomlem 11765 binom 11766 bcxmas 11771 arisum2 11781 explecnv 11787 ef0lem 11942 dvdsval2 12072 dvdsdc 12080 moddvds 12081 dvds0 12088 0dvds 12093 zdvdsdc 12094 dvdscmulr 12102 dvdsmulcr 12103 fsumdvds 12124 dvdslelemd 12125 dvdsabseq 12129 divconjdvds 12131 alzdvds 12136 fzo0dvdseq 12139 odd2np1lem 12154 bitsfzo 12237 bitsmod 12238 0bits 12241 m1bits 12242 bitsinv1lem 12243 bitsinv1 12244 gcdmndc 12247 gcdsupex 12249 gcdsupcl 12250 gcd0val 12252 gcddvds 12255 gcd0id 12271 gcdid0 12272 gcdid 12278 bezoutlema 12291 bezoutlemb 12292 bezoutlembi 12297 dfgcd3 12302 dfgcd2 12306 gcdmultiplez 12313 dvdssq 12323 algcvgblem 12342 lcmmndc 12355 lcm0val 12358 dvdslcm 12362 lcmeq0 12364 lcmgcd 12371 lcmdvds 12372 lcmid 12373 3lcm2e6woprm 12379 6lcm4e12 12380 cncongr2 12397 sqrt2irrap 12473 dfphi2 12513 phiprmpw 12515 crth 12517 phimullem 12518 eulerthlemfi 12521 hashgcdeq 12533 phisum 12534 pceu 12589 pcdiv 12596 pc0 12598 pcqdiv 12601 pcexp 12603 pcxnn0cl 12604 pcxcl 12605 pcxqcl 12606 pcdvdstr 12621 dvdsprmpweqnn 12630 pcaddlem 12633 pcadd 12634 pcfaclem 12643 qexpz 12646 zgz 12667 igz 12668 4sqlem19 12703 ennnfonelemjn 12744 ennnfonelem1 12749 mulg0 13432 subgmulg 13495 zring0 14333 zndvds0 14383 znf1o 14384 znfi 14388 znhash 14389 psr1clfi 14421 plycolemc 15201 rpcxp0 15341 0sgm 15428 1sgmprm 15437 lgslem2 15449 lgsfcl2 15454 lgs0 15461 lgsneg 15472 lgsdilem 15475 lgsdir2lem3 15478 lgsdir 15483 lgsdilem2 15484 lgsdi 15485 lgsne0 15486 lgsprme0 15490 lgsdirnn0 15495 lgsdinn0 15496 apdifflemr 15948 apdiff 15949 iswomni0 15952 nconstwlpolem 15966 |
| Copyright terms: Public domain | W3C validator |