| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0z | Unicode version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8072 |
. 2
| |
| 2 | eqid 2205 |
. . 3
| |
| 3 | 2 | 3mix1i 1172 |
. 2
|
| 4 | elz 9374 |
. 2
| |
| 5 | 1, 3, 4 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-neg 8246 df-z 9373 |
| This theorem is referenced by: 0zd 9384 nn0ssz 9390 znegcl 9403 nnnle0 9421 zgt0ge1 9431 nn0n0n1ge2b 9452 nn0lt10b 9453 nnm1ge0 9459 gtndiv 9468 msqznn 9473 zeo 9478 nn0ind 9487 fnn0ind 9489 nn0uz 9683 1eluzge0 9695 elnn0dc 9732 eqreznegel 9735 qreccl 9763 qdivcl 9764 irrmul 9768 irrmulap 9769 fz10 10168 fz01en 10175 fzpreddisj 10193 fzshftral 10230 fznn0 10235 fz1ssfz0 10239 fz0sn 10243 fz0tp 10244 fz0to3un2pr 10245 fz0to4untppr 10246 elfz0ubfz0 10247 1fv 10261 fzo0n 10290 lbfzo0 10305 elfzonlteqm1 10339 fzo01 10345 fzo0to2pr 10347 fzo0to3tp 10348 flqge0nn0 10436 divfl0 10439 btwnzge0 10443 modqmulnn 10487 zmodfz 10491 modqid 10494 zmodid2 10497 q0mod 10500 modqmuladdnn0 10513 frecfzennn 10571 xnn0nnen 10582 qexpclz 10705 qsqeqor 10795 facdiv 10883 bcval 10894 bcnn 10902 bcm1k 10905 bcval5 10908 bcpasc 10911 4bc2eq6 10919 hashinfom 10923 iswrd 10996 iswrdiz 11001 wrdexg 11005 wrdfin 11013 wrdnval 11024 wrdred1hash 11037 lsw0 11041 ccatsymb 11058 s111 11085 ccat1st1st 11093 fzowrddc 11100 swrdlen 11105 swrdnd 11112 swrdwrdsymbg 11117 swrds1 11121 rexfiuz 11300 qabsor 11386 nn0abscl 11396 nnabscl 11411 climz 11603 climaddc1 11640 climmulc2 11642 climsubc1 11643 climsubc2 11644 climlec2 11652 binomlem 11794 binom 11795 bcxmas 11800 arisum2 11810 explecnv 11816 ef0lem 11971 dvdsval2 12101 dvdsdc 12109 moddvds 12110 dvds0 12117 0dvds 12122 zdvdsdc 12123 dvdscmulr 12131 dvdsmulcr 12132 fsumdvds 12153 dvdslelemd 12154 dvdsabseq 12158 divconjdvds 12160 alzdvds 12165 fzo0dvdseq 12168 odd2np1lem 12183 bitsfzo 12266 bitsmod 12267 0bits 12270 m1bits 12271 bitsinv1lem 12272 bitsinv1 12273 gcdmndc 12276 gcdsupex 12278 gcdsupcl 12279 gcd0val 12281 gcddvds 12284 gcd0id 12300 gcdid0 12301 gcdid 12307 bezoutlema 12320 bezoutlemb 12321 bezoutlembi 12326 dfgcd3 12331 dfgcd2 12335 gcdmultiplez 12342 dvdssq 12352 algcvgblem 12371 lcmmndc 12384 lcm0val 12387 dvdslcm 12391 lcmeq0 12393 lcmgcd 12400 lcmdvds 12401 lcmid 12402 3lcm2e6woprm 12408 6lcm4e12 12409 cncongr2 12426 sqrt2irrap 12502 dfphi2 12542 phiprmpw 12544 crth 12546 phimullem 12547 eulerthlemfi 12550 hashgcdeq 12562 phisum 12563 pceu 12618 pcdiv 12625 pc0 12627 pcqdiv 12630 pcexp 12632 pcxnn0cl 12633 pcxcl 12634 pcxqcl 12635 pcdvdstr 12650 dvdsprmpweqnn 12659 pcaddlem 12662 pcadd 12663 pcfaclem 12672 qexpz 12675 zgz 12696 igz 12697 4sqlem19 12732 ennnfonelemjn 12773 ennnfonelem1 12778 mulg0 13461 subgmulg 13524 zring0 14362 zndvds0 14412 znf1o 14413 znfi 14417 znhash 14418 psr1clfi 14450 plycolemc 15230 rpcxp0 15370 0sgm 15457 1sgmprm 15466 lgslem2 15478 lgsfcl2 15483 lgs0 15490 lgsneg 15501 lgsdilem 15504 lgsdir2lem3 15507 lgsdir 15512 lgsdilem2 15513 lgsdi 15514 lgsne0 15515 lgsprme0 15519 lgsdirnn0 15524 lgsdinn0 15525 apdifflemr 15986 apdiff 15987 iswomni0 15990 nconstwlpolem 16004 |
| Copyright terms: Public domain | W3C validator |