![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0z | Unicode version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 8019 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqid 2193 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | 3mix1i 1171 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | elz 9319 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 3, 4 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7966 ax-addrcl 7969 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 df-z 9318 |
This theorem is referenced by: 0zd 9329 nn0ssz 9335 znegcl 9348 zgt0ge1 9375 nn0n0n1ge2b 9396 nn0lt10b 9397 nnm1ge0 9403 gtndiv 9412 msqznn 9417 zeo 9422 nn0ind 9431 fnn0ind 9433 nn0uz 9627 1eluzge0 9639 elnn0dc 9676 eqreznegel 9679 qreccl 9707 qdivcl 9708 irrmul 9712 irrmulap 9713 fz10 10112 fz01en 10119 fzpreddisj 10137 fzshftral 10174 fznn0 10179 fz1ssfz0 10183 fz0sn 10187 fz0tp 10188 fz0to3un2pr 10189 fz0to4untppr 10190 elfz0ubfz0 10191 1fv 10205 lbfzo0 10248 elfzonlteqm1 10277 fzo01 10283 fzo0to2pr 10285 fzo0to3tp 10286 flqge0nn0 10362 divfl0 10365 btwnzge0 10369 modqmulnn 10413 zmodfz 10417 modqid 10420 zmodid2 10423 q0mod 10426 modqmuladdnn0 10439 frecfzennn 10497 xnn0nnen 10508 qexpclz 10631 qsqeqor 10721 facdiv 10809 bcval 10820 bcnn 10828 bcm1k 10831 bcval5 10834 bcpasc 10837 4bc2eq6 10845 hashinfom 10849 iswrd 10916 iswrdiz 10921 wrdexg 10925 wrdfin 10933 wrdnval 10944 wrdred1hash 10957 rexfiuz 11133 qabsor 11219 nn0abscl 11229 nnabscl 11244 climz 11435 climaddc1 11472 climmulc2 11474 climsubc1 11475 climsubc2 11476 climlec2 11484 binomlem 11626 binom 11627 bcxmas 11632 arisum2 11642 explecnv 11648 ef0lem 11803 dvdsval2 11933 dvdsdc 11941 moddvds 11942 dvds0 11949 0dvds 11954 zdvdsdc 11955 dvdscmulr 11963 dvdsmulcr 11964 dvdslelemd 11985 dvdsabseq 11989 divconjdvds 11991 alzdvds 11996 fzo0dvdseq 11999 odd2np1lem 12013 gcdmndc 12081 gcdsupex 12094 gcdsupcl 12095 gcd0val 12097 gcddvds 12100 gcd0id 12116 gcdid0 12117 gcdid 12123 bezoutlema 12136 bezoutlemb 12137 bezoutlembi 12142 dfgcd3 12147 dfgcd2 12151 gcdmultiplez 12158 dvdssq 12168 algcvgblem 12187 lcmmndc 12200 lcm0val 12203 dvdslcm 12207 lcmeq0 12209 lcmgcd 12216 lcmdvds 12217 lcmid 12218 3lcm2e6woprm 12224 6lcm4e12 12225 cncongr2 12242 sqrt2irrap 12318 dfphi2 12358 phiprmpw 12360 crth 12362 phimullem 12363 eulerthlemfi 12366 hashgcdeq 12377 phisum 12378 pceu 12433 pcdiv 12440 pc0 12442 pcqdiv 12445 pcexp 12447 pcxnn0cl 12448 pcxcl 12449 pcxqcl 12450 pcdvdstr 12465 dvdsprmpweqnn 12474 pcaddlem 12477 pcadd 12478 pcfaclem 12487 qexpz 12490 zgz 12511 igz 12512 4sqlem19 12547 ennnfonelemjn 12559 ennnfonelem1 12564 mulg0 13195 subgmulg 13258 zring0 14088 zndvds0 14138 znf1o 14139 znfi 14143 znhash 14144 rpcxp0 15033 lgslem2 15117 lgsfcl2 15122 lgs0 15129 lgsneg 15140 lgsdilem 15143 lgsdir2lem3 15146 lgsdir 15151 lgsdilem2 15152 lgsdi 15153 lgsne0 15154 lgsprme0 15158 lgsdirnn0 15163 lgsdinn0 15164 apdifflemr 15537 apdiff 15538 iswomni0 15541 nconstwlpolem 15555 |
Copyright terms: Public domain | W3C validator |