Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0z | Unicode version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . 2 | |
2 | eqid 2165 | . . 3 | |
3 | 2 | 3mix1i 1159 | . 2 |
4 | elz 9193 | . 2 | |
5 | 1, 3, 4 | mpbir2an 932 | 1 |
Colors of variables: wff set class |
Syntax hints: w3o 967 wceq 1343 wcel 2136 cr 7752 cc0 7753 cneg 8070 cn 8857 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 |
This theorem is referenced by: 0zd 9203 nn0ssz 9209 znegcl 9222 zgt0ge1 9249 nn0n0n1ge2b 9270 nn0lt10b 9271 nnm1ge0 9277 gtndiv 9286 msqznn 9291 zeo 9296 nn0ind 9305 fnn0ind 9307 nn0uz 9500 1eluzge0 9512 elnn0dc 9549 eqreznegel 9552 qreccl 9580 qdivcl 9581 irrmul 9585 fz10 9981 fz01en 9988 fzpreddisj 10006 fzshftral 10043 fznn0 10048 fz1ssfz0 10052 fz0sn 10056 fz0tp 10057 fz0to3un2pr 10058 fz0to4untppr 10059 elfz0ubfz0 10060 1fv 10074 lbfzo0 10116 elfzonlteqm1 10145 fzo01 10151 fzo0to2pr 10153 fzo0to3tp 10154 flqge0nn0 10228 divfl0 10231 btwnzge0 10235 modqmulnn 10277 zmodfz 10281 modqid 10284 zmodid2 10287 q0mod 10290 modqmuladdnn0 10303 frecfzennn 10361 qexpclz 10476 qsqeqor 10565 facdiv 10651 bcval 10662 bcnn 10670 bcm1k 10673 bcval5 10676 bcpasc 10679 4bc2eq6 10687 hashinfom 10691 rexfiuz 10931 qabsor 11017 nn0abscl 11027 nnabscl 11042 climz 11233 climaddc1 11270 climmulc2 11272 climsubc1 11273 climsubc2 11274 climlec2 11282 binomlem 11424 binom 11425 bcxmas 11430 arisum2 11440 explecnv 11446 ef0lem 11601 dvdsval2 11730 dvdsdc 11738 moddvds 11739 dvds0 11746 0dvds 11751 zdvdsdc 11752 dvdscmulr 11760 dvdsmulcr 11761 dvdslelemd 11781 dvdsabseq 11785 divconjdvds 11787 alzdvds 11792 fzo0dvdseq 11795 odd2np1lem 11809 gcdmndc 11877 gcdsupex 11890 gcdsupcl 11891 gcd0val 11893 gcddvds 11896 gcd0id 11912 gcdid0 11913 gcdid 11919 bezoutlema 11932 bezoutlemb 11933 bezoutlembi 11938 dfgcd3 11943 dfgcd2 11947 gcdmultiplez 11954 dvdssq 11964 algcvgblem 11981 lcmmndc 11994 lcm0val 11997 dvdslcm 12001 lcmeq0 12003 lcmgcd 12010 lcmdvds 12011 lcmid 12012 3lcm2e6woprm 12018 6lcm4e12 12019 cncongr2 12036 sqrt2irrap 12112 dfphi2 12152 phiprmpw 12154 crth 12156 phimullem 12157 eulerthlemfi 12160 hashgcdeq 12171 phisum 12172 pceu 12227 pcdiv 12234 pc0 12236 pcqdiv 12239 pcexp 12241 pcxnn0cl 12242 pcxcl 12243 pcdvdstr 12258 dvdsprmpweqnn 12267 pcaddlem 12270 pcadd 12271 pcfaclem 12279 qexpz 12282 zgz 12303 igz 12304 ennnfonelemjn 12335 ennnfonelem1 12340 rpcxp0 13459 lgslem2 13542 lgsfcl2 13547 lgs0 13554 lgsneg 13565 lgsdilem 13568 lgsdir2lem3 13571 lgsdir 13576 lgsdilem2 13577 lgsdi 13578 lgsne0 13579 lgsprme0 13583 lgsdirnn0 13588 lgsdinn0 13589 apdifflemr 13926 apdiff 13927 iswomni0 13930 nconstwlpolem 13943 |
Copyright terms: Public domain | W3C validator |