Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0z | Unicode version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7932 | . 2 | |
2 | eqid 2175 | . . 3 | |
3 | 2 | 3mix1i 1169 | . 2 |
4 | elz 9228 | . 2 | |
5 | 1, 3, 4 | mpbir2an 942 | 1 |
Colors of variables: wff set class |
Syntax hints: w3o 977 wceq 1353 wcel 2146 cr 7785 cc0 7786 cneg 8103 cn 8892 cz 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-neg 8105 df-z 9227 |
This theorem is referenced by: 0zd 9238 nn0ssz 9244 znegcl 9257 zgt0ge1 9284 nn0n0n1ge2b 9305 nn0lt10b 9306 nnm1ge0 9312 gtndiv 9321 msqznn 9326 zeo 9331 nn0ind 9340 fnn0ind 9342 nn0uz 9535 1eluzge0 9547 elnn0dc 9584 eqreznegel 9587 qreccl 9615 qdivcl 9616 irrmul 9620 fz10 10016 fz01en 10023 fzpreddisj 10041 fzshftral 10078 fznn0 10083 fz1ssfz0 10087 fz0sn 10091 fz0tp 10092 fz0to3un2pr 10093 fz0to4untppr 10094 elfz0ubfz0 10095 1fv 10109 lbfzo0 10151 elfzonlteqm1 10180 fzo01 10186 fzo0to2pr 10188 fzo0to3tp 10189 flqge0nn0 10263 divfl0 10266 btwnzge0 10270 modqmulnn 10312 zmodfz 10316 modqid 10319 zmodid2 10322 q0mod 10325 modqmuladdnn0 10338 frecfzennn 10396 qexpclz 10511 qsqeqor 10600 facdiv 10686 bcval 10697 bcnn 10705 bcm1k 10708 bcval5 10711 bcpasc 10714 4bc2eq6 10722 hashinfom 10726 rexfiuz 10966 qabsor 11052 nn0abscl 11062 nnabscl 11077 climz 11268 climaddc1 11305 climmulc2 11307 climsubc1 11308 climsubc2 11309 climlec2 11317 binomlem 11459 binom 11460 bcxmas 11465 arisum2 11475 explecnv 11481 ef0lem 11636 dvdsval2 11765 dvdsdc 11773 moddvds 11774 dvds0 11781 0dvds 11786 zdvdsdc 11787 dvdscmulr 11795 dvdsmulcr 11796 dvdslelemd 11816 dvdsabseq 11820 divconjdvds 11822 alzdvds 11827 fzo0dvdseq 11830 odd2np1lem 11844 gcdmndc 11912 gcdsupex 11925 gcdsupcl 11926 gcd0val 11928 gcddvds 11931 gcd0id 11947 gcdid0 11948 gcdid 11954 bezoutlema 11967 bezoutlemb 11968 bezoutlembi 11973 dfgcd3 11978 dfgcd2 11982 gcdmultiplez 11989 dvdssq 11999 algcvgblem 12016 lcmmndc 12029 lcm0val 12032 dvdslcm 12036 lcmeq0 12038 lcmgcd 12045 lcmdvds 12046 lcmid 12047 3lcm2e6woprm 12053 6lcm4e12 12054 cncongr2 12071 sqrt2irrap 12147 dfphi2 12187 phiprmpw 12189 crth 12191 phimullem 12192 eulerthlemfi 12195 hashgcdeq 12206 phisum 12207 pceu 12262 pcdiv 12269 pc0 12271 pcqdiv 12274 pcexp 12276 pcxnn0cl 12277 pcxcl 12278 pcdvdstr 12293 dvdsprmpweqnn 12302 pcaddlem 12305 pcadd 12306 pcfaclem 12314 qexpz 12317 zgz 12338 igz 12339 ennnfonelemjn 12370 ennnfonelem1 12375 mulg0 12849 rpcxp0 13890 lgslem2 13973 lgsfcl2 13978 lgs0 13985 lgsneg 13996 lgsdilem 13999 lgsdir2lem3 14002 lgsdir 14007 lgsdilem2 14008 lgsdi 14009 lgsne0 14010 lgsprme0 14014 lgsdirnn0 14019 lgsdinn0 14020 apdifflemr 14356 apdiff 14357 iswomni0 14360 nconstwlpolem 14373 |
Copyright terms: Public domain | W3C validator |