![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0z | Unicode version |
Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
0z |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 8021 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqid 2193 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | 3mix1i 1171 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | elz 9322 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 3, 4 | mpbir2an 944 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 df-z 9321 |
This theorem is referenced by: 0zd 9332 nn0ssz 9338 znegcl 9351 zgt0ge1 9378 nn0n0n1ge2b 9399 nn0lt10b 9400 nnm1ge0 9406 gtndiv 9415 msqznn 9420 zeo 9425 nn0ind 9434 fnn0ind 9436 nn0uz 9630 1eluzge0 9642 elnn0dc 9679 eqreznegel 9682 qreccl 9710 qdivcl 9711 irrmul 9715 irrmulap 9716 fz10 10115 fz01en 10122 fzpreddisj 10140 fzshftral 10177 fznn0 10182 fz1ssfz0 10186 fz0sn 10190 fz0tp 10191 fz0to3un2pr 10192 fz0to4untppr 10193 elfz0ubfz0 10194 1fv 10208 lbfzo0 10251 elfzonlteqm1 10280 fzo01 10286 fzo0to2pr 10288 fzo0to3tp 10289 flqge0nn0 10365 divfl0 10368 btwnzge0 10372 modqmulnn 10416 zmodfz 10420 modqid 10423 zmodid2 10426 q0mod 10429 modqmuladdnn0 10442 frecfzennn 10500 xnn0nnen 10511 qexpclz 10634 qsqeqor 10724 facdiv 10812 bcval 10823 bcnn 10831 bcm1k 10834 bcval5 10837 bcpasc 10840 4bc2eq6 10848 hashinfom 10852 iswrd 10919 iswrdiz 10924 wrdexg 10928 wrdfin 10936 wrdnval 10947 wrdred1hash 10960 rexfiuz 11136 qabsor 11222 nn0abscl 11232 nnabscl 11247 climz 11438 climaddc1 11475 climmulc2 11477 climsubc1 11478 climsubc2 11479 climlec2 11487 binomlem 11629 binom 11630 bcxmas 11635 arisum2 11645 explecnv 11651 ef0lem 11806 dvdsval2 11936 dvdsdc 11944 moddvds 11945 dvds0 11952 0dvds 11957 zdvdsdc 11958 dvdscmulr 11966 dvdsmulcr 11967 dvdslelemd 11988 dvdsabseq 11992 divconjdvds 11994 alzdvds 11999 fzo0dvdseq 12002 odd2np1lem 12016 gcdmndc 12084 gcdsupex 12097 gcdsupcl 12098 gcd0val 12100 gcddvds 12103 gcd0id 12119 gcdid0 12120 gcdid 12126 bezoutlema 12139 bezoutlemb 12140 bezoutlembi 12145 dfgcd3 12150 dfgcd2 12154 gcdmultiplez 12161 dvdssq 12171 algcvgblem 12190 lcmmndc 12203 lcm0val 12206 dvdslcm 12210 lcmeq0 12212 lcmgcd 12219 lcmdvds 12220 lcmid 12221 3lcm2e6woprm 12227 6lcm4e12 12228 cncongr2 12245 sqrt2irrap 12321 dfphi2 12361 phiprmpw 12363 crth 12365 phimullem 12366 eulerthlemfi 12369 hashgcdeq 12380 phisum 12381 pceu 12436 pcdiv 12443 pc0 12445 pcqdiv 12448 pcexp 12450 pcxnn0cl 12451 pcxcl 12452 pcxqcl 12453 pcdvdstr 12468 dvdsprmpweqnn 12477 pcaddlem 12480 pcadd 12481 pcfaclem 12490 qexpz 12493 zgz 12514 igz 12515 4sqlem19 12550 ennnfonelemjn 12562 ennnfonelem1 12567 mulg0 13198 subgmulg 13261 zring0 14099 zndvds0 14149 znf1o 14150 znfi 14154 znhash 14155 plycolemc 14936 rpcxp0 15074 lgslem2 15158 lgsfcl2 15163 lgs0 15170 lgsneg 15181 lgsdilem 15184 lgsdir2lem3 15187 lgsdir 15192 lgsdilem2 15193 lgsdi 15194 lgsne0 15195 lgsprme0 15199 lgsdirnn0 15204 lgsdinn0 15205 apdifflemr 15607 apdiff 15608 iswomni0 15611 nconstwlpolem 15625 |
Copyright terms: Public domain | W3C validator |