ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm Unicode version

Theorem enm 6915
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem enm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6835 . . . . 5  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 f1of 5522 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
3 ffvelcdm 5713 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
4 elex2 2788 . . . . . . . . 9  |-  ( ( f `  x )  e.  B  ->  E. y 
y  e.  B )
53, 4syl 14 . . . . . . . 8  |-  ( ( f : A --> B  /\  x  e.  A )  ->  E. y  y  e.  B )
65ex 115 . . . . . . 7  |-  ( f : A --> B  -> 
( x  e.  A  ->  E. y  y  e.  B ) )
72, 6syl 14 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y 
y  e.  B ) )
87exlimiv 1621 . . . . 5  |-  ( E. f  f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y  y  e.  B ) )
91, 8sylbi 121 . . . 4  |-  ( A 
~~  B  ->  (
x  e.  A  ->  E. y  y  e.  B ) )
109com12 30 . . 3  |-  ( x  e.  A  ->  ( A  ~~  B  ->  E. y 
y  e.  B ) )
1110exlimiv 1621 . 2  |-  ( E. x  x  e.  A  ->  ( A  ~~  B  ->  E. y  y  e.  B ) )
1211impcom 125 1  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1515    e. wcel 2176   class class class wbr 4044   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-en 6828
This theorem is referenced by:  ssfilem  6972  diffitest  6984
  Copyright terms: Public domain W3C validator