ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm Unicode version

Theorem enm 6876
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem enm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6803 . . . . 5  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 f1of 5501 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
3 ffvelcdm 5692 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
4 elex2 2776 . . . . . . . . 9  |-  ( ( f `  x )  e.  B  ->  E. y 
y  e.  B )
53, 4syl 14 . . . . . . . 8  |-  ( ( f : A --> B  /\  x  e.  A )  ->  E. y  y  e.  B )
65ex 115 . . . . . . 7  |-  ( f : A --> B  -> 
( x  e.  A  ->  E. y  y  e.  B ) )
72, 6syl 14 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y 
y  e.  B ) )
87exlimiv 1609 . . . . 5  |-  ( E. f  f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y  y  e.  B ) )
91, 8sylbi 121 . . . 4  |-  ( A 
~~  B  ->  (
x  e.  A  ->  E. y  y  e.  B ) )
109com12 30 . . 3  |-  ( x  e.  A  ->  ( A  ~~  B  ->  E. y 
y  e.  B ) )
1110exlimiv 1609 . 2  |-  ( E. x  x  e.  A  ->  ( A  ~~  B  ->  E. y  y  e.  B ) )
1211impcom 125 1  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1503    e. wcel 2164   class class class wbr 4030   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-en 6797
This theorem is referenced by:  ssfilem  6933  diffitest  6945
  Copyright terms: Public domain W3C validator