ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm Unicode version

Theorem enm 6762
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem enm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6689 . . . . 5  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 f1of 5413 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
3 ffvelrn 5599 . . . . . . . . 9  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
4 elex2 2728 . . . . . . . . 9  |-  ( ( f `  x )  e.  B  ->  E. y 
y  e.  B )
53, 4syl 14 . . . . . . . 8  |-  ( ( f : A --> B  /\  x  e.  A )  ->  E. y  y  e.  B )
65ex 114 . . . . . . 7  |-  ( f : A --> B  -> 
( x  e.  A  ->  E. y  y  e.  B ) )
72, 6syl 14 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y 
y  e.  B ) )
87exlimiv 1578 . . . . 5  |-  ( E. f  f : A -1-1-onto-> B  ->  ( x  e.  A  ->  E. y  y  e.  B ) )
91, 8sylbi 120 . . . 4  |-  ( A 
~~  B  ->  (
x  e.  A  ->  E. y  y  e.  B ) )
109com12 30 . . 3  |-  ( x  e.  A  ->  ( A  ~~  B  ->  E. y 
y  e.  B ) )
1110exlimiv 1578 . 2  |-  ( E. x  x  e.  A  ->  ( A  ~~  B  ->  E. y  y  e.  B ) )
1211impcom 124 1  |-  ( ( A  ~~  B  /\  E. x  x  e.  A
)  ->  E. y 
y  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1472    e. wcel 2128   class class class wbr 3965   -->wf 5165   -1-1-onto->wf1o 5168   ` cfv 5169    ~~ cen 6680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-en 6683
This theorem is referenced by:  ssfilem  6817  diffitest  6829
  Copyright terms: Public domain W3C validator