ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm GIF version

Theorem enm 6975
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem enm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6893 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 5571 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 ffvelcdm 5767 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
4 elex2 2816 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝐵 → ∃𝑦 𝑦𝐵)
53, 4syl 14 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑦𝐵)
65ex 115 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
72, 6syl 14 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
87exlimiv 1644 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
91, 8sylbi 121 . . . 4 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
109com12 30 . . 3 (𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1110exlimiv 1644 . 2 (∃𝑥 𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1211impcom 125 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1538  wcel 2200   class class class wbr 4082  wf 5313  1-1-ontowf1o 5316  cfv 5317  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-en 6886
This theorem is referenced by:  ssfilem  7033  diffitest  7045
  Copyright terms: Public domain W3C validator