Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enm | GIF version |
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
enm | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6725 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | f1of 5442 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | ffvelrn 5629 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝐵) | |
4 | elex2 2746 | . . . . . . . . 9 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
6 | 5 | ex 114 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
7 | 2, 6 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
8 | 7 | exlimiv 1591 | . . . . 5 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
9 | 1, 8 | sylbi 120 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
10 | 9 | com12 30 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
11 | 10 | exlimiv 1591 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
12 | 11 | impcom 124 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 class class class wbr 3989 ⟶wf 5194 –1-1-onto→wf1o 5197 ‘cfv 5198 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-en 6719 |
This theorem is referenced by: ssfilem 6853 diffitest 6865 |
Copyright terms: Public domain | W3C validator |