ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm GIF version

Theorem enm 6798
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem enm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6725 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 5442 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 ffvelrn 5629 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
4 elex2 2746 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝐵 → ∃𝑦 𝑦𝐵)
53, 4syl 14 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑦𝐵)
65ex 114 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
72, 6syl 14 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
87exlimiv 1591 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
91, 8sylbi 120 . . . 4 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
109com12 30 . . 3 (𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1110exlimiv 1591 . 2 (∃𝑥 𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1211impcom 124 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1485  wcel 2141   class class class wbr 3989  wf 5194  1-1-ontowf1o 5197  cfv 5198  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-en 6719
This theorem is referenced by:  ssfilem  6853  diffitest  6865
  Copyright terms: Public domain W3C validator