ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm GIF version

Theorem enm 6643
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem enm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6571 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 5301 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 ffvelrn 5485 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
4 elex2 2657 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝐵 → ∃𝑦 𝑦𝐵)
53, 4syl 14 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑦𝐵)
65ex 114 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
72, 6syl 14 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
87exlimiv 1545 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
91, 8sylbi 120 . . . 4 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
109com12 30 . . 3 (𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1110exlimiv 1545 . 2 (∃𝑥 𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1211impcom 124 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1436  wcel 1448   class class class wbr 3875  wf 5055  1-1-ontowf1o 5058  cfv 5059  cen 6562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-en 6565
This theorem is referenced by:  ssfilem  6698  diffitest  6710
  Copyright terms: Public domain W3C validator