![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enm | GIF version |
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
enm | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6571 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | f1of 5301 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | ffvelrn 5485 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝐵) | |
4 | elex2 2657 | . . . . . . . . 9 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
6 | 5 | ex 114 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
7 | 2, 6 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
8 | 7 | exlimiv 1545 | . . . . 5 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
9 | 1, 8 | sylbi 120 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
10 | 9 | com12 30 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
11 | 10 | exlimiv 1545 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
12 | 11 | impcom 124 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1436 ∈ wcel 1448 class class class wbr 3875 ⟶wf 5055 –1-1-onto→wf1o 5058 ‘cfv 5059 ≈ cen 6562 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-en 6565 |
This theorem is referenced by: ssfilem 6698 diffitest 6710 |
Copyright terms: Public domain | W3C validator |