ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enm GIF version

Theorem enm 6707
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
Assertion
Ref Expression
enm ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem enm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6634 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 5360 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 ffvelrn 5546 . . . . . . . . 9 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
4 elex2 2697 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝐵 → ∃𝑦 𝑦𝐵)
53, 4syl 14 . . . . . . . 8 ((𝑓:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑦𝐵)
65ex 114 . . . . . . 7 (𝑓:𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
72, 6syl 14 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
87exlimiv 1577 . . . . 5 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
91, 8sylbi 120 . . . 4 (𝐴𝐵 → (𝑥𝐴 → ∃𝑦 𝑦𝐵))
109com12 30 . . 3 (𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1110exlimiv 1577 . 2 (∃𝑥 𝑥𝐴 → (𝐴𝐵 → ∃𝑦 𝑦𝐵))
1211impcom 124 1 ((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1468  wcel 1480   class class class wbr 3924  wf 5114  1-1-ontowf1o 5117  cfv 5118  cen 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-en 6628
This theorem is referenced by:  ssfilem  6762  diffitest  6774
  Copyright terms: Public domain W3C validator