| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enm | GIF version | ||
| Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.) |
| Ref | Expression |
|---|---|
| enm | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6834 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
| 2 | f1of 5521 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 3 | ffvelcdm 5712 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝐵) | |
| 4 | elex2 2787 | . . . . . . . . 9 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵) | |
| 5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
| 6 | 5 | ex 115 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 7 | 2, 6 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 8 | 7 | exlimiv 1620 | . . . . 5 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 9 | 1, 8 | sylbi 121 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 10 | 9 | com12 30 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 11 | 10 | exlimiv 1620 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
| 12 | 11 | impcom 125 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1514 ∈ wcel 2175 class class class wbr 4043 ⟶wf 5266 –1-1-onto→wf1o 5269 ‘cfv 5270 ≈ cen 6824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-en 6827 |
| This theorem is referenced by: ssfilem 6971 diffitest 6983 |
| Copyright terms: Public domain | W3C validator |