Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enm | GIF version |
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
enm | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6713 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | f1of 5432 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | ffvelrn 5618 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝐵) | |
4 | elex2 2742 | . . . . . . . . 9 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
6 | 5 | ex 114 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
7 | 2, 6 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
8 | 7 | exlimiv 1586 | . . . . 5 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
9 | 1, 8 | sylbi 120 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
10 | 9 | com12 30 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
11 | 10 | exlimiv 1586 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
12 | 11 | impcom 124 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1480 ∈ wcel 2136 class class class wbr 3982 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-en 6707 |
This theorem is referenced by: ssfilem 6841 diffitest 6853 |
Copyright terms: Public domain | W3C validator |