ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrd GIF version

Theorem eqsstrrd 3207
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrd.1 (𝜑𝐵 = 𝐴)
eqsstrrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstrrd (𝜑𝐴𝐶)

Proof of Theorem eqsstrrd
StepHypRef Expression
1 eqsstrrd.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2195 . 2 (𝜑𝐴 = 𝐵)
3 eqsstrrd.2 . 2 (𝜑𝐵𝐶)
42, 3eqsstrd 3206 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  ssxpbm  5082  ssxp1  5083  ssxp2  5084  suppssof1  6124  tfrlemiubacc  6355  tfr1onlemubacc  6371  tfrcllemubacc  6384  oaword1  6496  phplem4dom  6890  fisseneq  6960  nnnninfeq2  7157  archnqq  7446  imasaddfnlemg  12791  resmhm2  12940  ringidss  13383  subrg1  13578  subrgdvds  13582  subrguss  13583  subrginv  13584  islss3  13695  lspsnneg  13736  epttop  14050  metequiv2  14456  limccnpcntop  14604  limccnp2lem  14605  limccnp2cntop  14606  nnsf  15216
  Copyright terms: Public domain W3C validator