ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrrd GIF version

Theorem eqsstrrd 3234
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrrd.1 (𝜑𝐵 = 𝐴)
eqsstrrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqsstrrd (𝜑𝐴𝐶)

Proof of Theorem eqsstrrd
StepHypRef Expression
1 eqsstrrd.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2212 . 2 (𝜑𝐴 = 𝐵)
3 eqsstrrd.2 . 2 (𝜑𝐵𝐶)
42, 3eqsstrd 3233 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  ssxpbm  5132  ssxp1  5133  ssxp2  5134  suppssof1  6194  tfrlemiubacc  6434  tfr1onlemubacc  6450  tfrcllemubacc  6463  oaword1  6575  phplem4dom  6979  fisseneq  7052  nnnninfeq2  7252  archnqq  7560  hashdmprop2dom  11021  imasaddfnlemg  13231  resmhm2  13405  ringidss  13876  subrg1  14078  subrgdvds  14082  subrguss  14083  subrginv  14084  islss3  14226  lspsnneg  14267  epttop  14647  metequiv2  15053  limccnpcntop  15232  limccnp2lem  15233  limccnp2cntop  15234  nnsf  16114
  Copyright terms: Public domain W3C validator