![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2199 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrd 3215 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssxpbm 5101 ssxp1 5102 ssxp2 5103 suppssof1 6148 tfrlemiubacc 6383 tfr1onlemubacc 6399 tfrcllemubacc 6412 oaword1 6524 phplem4dom 6918 fisseneq 6988 nnnninfeq2 7188 archnqq 7477 imasaddfnlemg 12897 resmhm2 13060 ringidss 13525 subrg1 13727 subrgdvds 13731 subrguss 13732 subrginv 13733 islss3 13875 lspsnneg 13916 epttop 14258 metequiv2 14664 limccnpcntop 14829 limccnp2lem 14830 limccnp2cntop 14831 nnsf 15495 |
Copyright terms: Public domain | W3C validator |