| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2211 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrd 3229 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssxpbm 5118 ssxp1 5119 ssxp2 5120 suppssof1 6176 tfrlemiubacc 6416 tfr1onlemubacc 6432 tfrcllemubacc 6445 oaword1 6557 phplem4dom 6959 fisseneq 7031 nnnninfeq2 7231 archnqq 7530 hashdmprop2dom 10989 imasaddfnlemg 13146 resmhm2 13320 ringidss 13791 subrg1 13993 subrgdvds 13997 subrguss 13998 subrginv 13999 islss3 14141 lspsnneg 14182 epttop 14562 metequiv2 14968 limccnpcntop 15147 limccnp2lem 15148 limccnp2cntop 15149 nnsf 15942 |
| Copyright terms: Public domain | W3C validator |