| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2212 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrd 3233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssxpbm 5132 ssxp1 5133 ssxp2 5134 suppssof1 6194 tfrlemiubacc 6434 tfr1onlemubacc 6450 tfrcllemubacc 6463 oaword1 6575 phplem4dom 6979 fisseneq 7052 nnnninfeq2 7252 archnqq 7560 hashdmprop2dom 11021 imasaddfnlemg 13231 resmhm2 13405 ringidss 13876 subrg1 14078 subrgdvds 14082 subrguss 14083 subrginv 14084 islss3 14226 lspsnneg 14267 epttop 14647 metequiv2 15053 limccnpcntop 15232 limccnp2lem 15233 limccnp2cntop 15234 nnsf 16114 |
| Copyright terms: Public domain | W3C validator |