Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2176 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrd 3183 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssxpbm 5046 ssxp1 5047 ssxp2 5048 suppssof1 6078 tfrlemiubacc 6309 tfr1onlemubacc 6325 tfrcllemubacc 6338 oaword1 6450 phplem4dom 6840 fisseneq 6909 nnnninfeq2 7105 archnqq 7379 epttop 12884 metequiv2 13290 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 nnsf 14038 |
Copyright terms: Public domain | W3C validator |