![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2199 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrd 3216 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssxpbm 5102 ssxp1 5103 ssxp2 5104 suppssof1 6150 tfrlemiubacc 6385 tfr1onlemubacc 6401 tfrcllemubacc 6414 oaword1 6526 phplem4dom 6920 fisseneq 6990 nnnninfeq2 7190 archnqq 7479 imasaddfnlemg 12900 resmhm2 13063 ringidss 13528 subrg1 13730 subrgdvds 13734 subrguss 13735 subrginv 13736 islss3 13878 lspsnneg 13919 epttop 14269 metequiv2 14675 limccnpcntop 14854 limccnp2lem 14855 limccnp2cntop 14856 nnsf 15565 |
Copyright terms: Public domain | W3C validator |