| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2235 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrd 3260 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssxpbm 5163 ssxp1 5164 ssxp2 5165 suppssof1 6234 tfrlemiubacc 6474 tfr1onlemubacc 6490 tfrcllemubacc 6503 oaword1 6615 phplem4dom 7019 fisseneq 7092 nnnninfeq2 7292 archnqq 7600 hashdmprop2dom 11061 imasaddfnlemg 13342 resmhm2 13516 ringidss 13987 subrg1 14189 subrgdvds 14193 subrguss 14194 subrginv 14195 islss3 14337 lspsnneg 14378 epttop 14758 metequiv2 15164 limccnpcntop 15343 limccnp2lem 15344 limccnp2cntop 15345 umgredgprv 15909 uspgrupgrushgr 15974 usgrumgruspgr 15977 nnsf 16330 |
| Copyright terms: Public domain | W3C validator |