![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2195 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | eqsstrd 3206 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: ssxpbm 5082 ssxp1 5083 ssxp2 5084 suppssof1 6124 tfrlemiubacc 6355 tfr1onlemubacc 6371 tfrcllemubacc 6384 oaword1 6496 phplem4dom 6890 fisseneq 6960 nnnninfeq2 7157 archnqq 7446 imasaddfnlemg 12791 resmhm2 12940 ringidss 13383 subrg1 13578 subrgdvds 13582 subrguss 13583 subrginv 13584 islss3 13695 lspsnneg 13736 epttop 14050 metequiv2 14456 limccnpcntop 14604 limccnp2lem 14605 limccnp2cntop 14606 nnsf 15216 |
Copyright terms: Public domain | W3C validator |