| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2210 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrd 3228 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ssxpbm 5117 ssxp1 5118 ssxp2 5119 suppssof1 6175 tfrlemiubacc 6415 tfr1onlemubacc 6431 tfrcllemubacc 6444 oaword1 6556 phplem4dom 6958 fisseneq 7030 nnnninfeq2 7230 archnqq 7529 hashdmprop2dom 10987 imasaddfnlemg 13117 resmhm2 13291 ringidss 13762 subrg1 13964 subrgdvds 13968 subrguss 13969 subrginv 13970 islss3 14112 lspsnneg 14153 epttop 14533 metequiv2 14939 limccnpcntop 15118 limccnp2lem 15119 limccnp2cntop 15120 nnsf 15904 |
| Copyright terms: Public domain | W3C validator |