| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| eqsstrrd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| eqsstrrd | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | eqsstrrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
| 4 | 2, 3 | eqsstrd 3220 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssxpbm 5106 ssxp1 5107 ssxp2 5108 suppssof1 6157 tfrlemiubacc 6397 tfr1onlemubacc 6413 tfrcllemubacc 6426 oaword1 6538 phplem4dom 6932 fisseneq 7004 nnnninfeq2 7204 archnqq 7503 imasaddfnlemg 13018 resmhm2 13192 ringidss 13663 subrg1 13865 subrgdvds 13869 subrguss 13870 subrginv 13871 islss3 14013 lspsnneg 14054 epttop 14434 metequiv2 14840 limccnpcntop 15019 limccnp2lem 15020 limccnp2cntop 15021 nnsf 15760 |
| Copyright terms: Public domain | W3C validator |