ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrginv Unicode version

Theorem subrginv 13941
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1  |-  S  =  ( Rs  A )
subrginv.2  |-  I  =  ( invr `  R
)
subrginv.3  |-  U  =  (Unit `  S )
subrginv.4  |-  J  =  ( invr `  S
)
Assertion
Ref Expression
subrginv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 13930 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  R  e.  Ring )
3 subrginv.1 . . . . . . . 8  |-  S  =  ( Rs  A )
43subrgbas 13934 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
5 eqid 2204 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
65subrgss 13926 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
74, 6eqsstrrd 3229 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
87adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( Base `  S )  C_  ( Base `  R )
)
93subrgring 13928 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 subrginv.3 . . . . . . 7  |-  U  =  (Unit `  S )
11 subrginv.4 . . . . . . 7  |-  J  =  ( invr `  S
)
12 eqid 2204 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
1310, 11, 12ringinvcl 13829 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
149, 13sylan 283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
158, 14sseldd 3193 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  R
) )
16 eqidd 2205 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( Base `  S )  =  ( Base `  S
) )
1710a1i 9 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  U  =  (Unit `  S )
)
189adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  S  e.  Ring )
19 ringsrg 13751 . . . . . . 7  |-  ( S  e.  Ring  ->  S  e. SRing
)
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  S  e. SRing )
21 simpr 110 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  U )
2216, 17, 20, 21unitcld 13812 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  S
) )
238, 22sseldd 3193 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
24 eqid 2204 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
253, 24, 10subrguss 13940 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
2625sselda 3192 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  (Unit `  R )
)
27 subrginv.2 . . . . . 6  |-  I  =  ( invr `  R
)
2824, 27, 5ringinvcl 13829 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( I `  X )  e.  (
Base `  R )
)
291, 26, 28syl2an2r 595 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  e.  ( Base `  R
) )
30 eqid 2204 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30ringass 13720 . . . 4  |-  ( ( R  e.  Ring  /\  (
( J `  X
)  e.  ( Base `  R )  /\  X  e.  ( Base `  R
)  /\  ( I `  X )  e.  (
Base `  R )
) )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
322, 15, 23, 29, 31syl13anc 1251 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
33 eqid 2204 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
34 eqid 2204 . . . . . . 7  |-  ( 1r
`  S )  =  ( 1r `  S
)
3510, 11, 33, 34unitlinv 13830 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
369, 35sylan 283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
373, 30ressmulrg 12919 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
381, 37mpdan 421 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
3938adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( .r `  R )  =  ( .r `  S
) )
4039oveqd 5960 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( ( J `
 X ) ( .r `  S ) X ) )
41 eqid 2204 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
423, 41subrg1 13935 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4342adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  S
) )
4436, 40, 433eqtr4d 2247 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
4544oveq1d 5958 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( 1r
`  R ) ( .r `  R ) ( I `  X
) ) )
4624, 27, 30, 41unitrinv 13831 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( X
( .r `  R
) ( I `  X ) )  =  ( 1r `  R
) )
471, 26, 46syl2an2r 595 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
4847oveq2d 5959 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( X ( .r `  R
) ( I `  X ) ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
4932, 45, 483eqtr3d 2245 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
505, 30, 41ringlidm 13727 . . 3  |-  ( ( R  e.  Ring  /\  (
I `  X )  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
511, 29, 50syl2an2r 595 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
525, 30, 41ringridm 13728 . . 3  |-  ( ( R  e.  Ring  /\  ( J `  X )  e.  ( Base `  R
) )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
531, 15, 52syl2an2r 595 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
5449, 51, 533eqtr3d 2245 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    C_ wss 3165   ` cfv 5270  (class class class)co 5943   Basecbs 12774   ↾s cress 12775   .rcmulr 12852   1rcur 13663  SRingcsrg 13667   Ringcrg 13700  Unitcui 13791   invrcinvr 13824  SubRingcsubrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-subg 13448  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794  df-invr 13825  df-subrg 13923
This theorem is referenced by:  subrgdv  13942  subrgunit  13943  subrgugrp  13944
  Copyright terms: Public domain W3C validator