| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrginv | Unicode version | ||
| Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrginv.1 |
|
| subrginv.2 |
|
| subrginv.3 |
|
| subrginv.4 |
|
| Ref | Expression |
|---|---|
| subrginv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 14063 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | subrginv.1 |
. . . . . . . 8
| |
| 4 | 3 | subrgbas 14067 |
. . . . . . 7
|
| 5 | eqid 2206 |
. . . . . . . 8
| |
| 6 | 5 | subrgss 14059 |
. . . . . . 7
|
| 7 | 4, 6 | eqsstrrd 3234 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | 3 | subrgring 14061 |
. . . . . 6
|
| 10 | subrginv.3 |
. . . . . . 7
| |
| 11 | subrginv.4 |
. . . . . . 7
| |
| 12 | eqid 2206 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ringinvcl 13962 |
. . . . . 6
|
| 14 | 9, 13 | sylan 283 |
. . . . 5
|
| 15 | 8, 14 | sseldd 3198 |
. . . 4
|
| 16 | eqidd 2207 |
. . . . . 6
| |
| 17 | 10 | a1i 9 |
. . . . . 6
|
| 18 | 9 | adantr 276 |
. . . . . . 7
|
| 19 | ringsrg 13884 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . 6
| |
| 22 | 16, 17, 20, 21 | unitcld 13945 |
. . . . 5
|
| 23 | 8, 22 | sseldd 3198 |
. . . 4
|
| 24 | eqid 2206 |
. . . . . . 7
| |
| 25 | 3, 24, 10 | subrguss 14073 |
. . . . . 6
|
| 26 | 25 | sselda 3197 |
. . . . 5
|
| 27 | subrginv.2 |
. . . . . 6
| |
| 28 | 24, 27, 5 | ringinvcl 13962 |
. . . . 5
|
| 29 | 1, 26, 28 | syl2an2r 595 |
. . . 4
|
| 30 | eqid 2206 |
. . . . 5
| |
| 31 | 5, 30 | ringass 13853 |
. . . 4
|
| 32 | 2, 15, 23, 29, 31 | syl13anc 1252 |
. . 3
|
| 33 | eqid 2206 |
. . . . . . 7
| |
| 34 | eqid 2206 |
. . . . . . 7
| |
| 35 | 10, 11, 33, 34 | unitlinv 13963 |
. . . . . 6
|
| 36 | 9, 35 | sylan 283 |
. . . . 5
|
| 37 | 3, 30 | ressmulrg 13052 |
. . . . . . . 8
|
| 38 | 1, 37 | mpdan 421 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | 39 | oveqd 5974 |
. . . . 5
|
| 41 | eqid 2206 |
. . . . . . 7
| |
| 42 | 3, 41 | subrg1 14068 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | 36, 40, 43 | 3eqtr4d 2249 |
. . . 4
|
| 45 | 44 | oveq1d 5972 |
. . 3
|
| 46 | 24, 27, 30, 41 | unitrinv 13964 |
. . . . 5
|
| 47 | 1, 26, 46 | syl2an2r 595 |
. . . 4
|
| 48 | 47 | oveq2d 5973 |
. . 3
|
| 49 | 32, 45, 48 | 3eqtr3d 2247 |
. 2
|
| 50 | 5, 30, 41 | ringlidm 13860 |
. . 3
|
| 51 | 1, 29, 50 | syl2an2r 595 |
. 2
|
| 52 | 5, 30, 41 | ringridm 13861 |
. . 3
|
| 53 | 1, 15, 52 | syl2an2r 595 |
. 2
|
| 54 | 49, 51, 53 | 3eqtr3d 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-tpos 6344 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-subg 13581 df-cmn 13697 df-abl 13698 df-mgp 13758 df-ur 13797 df-srg 13801 df-ring 13835 df-oppr 13905 df-dvdsr 13926 df-unit 13927 df-invr 13958 df-subrg 14056 |
| This theorem is referenced by: subrgdv 14075 subrgunit 14076 subrgugrp 14077 |
| Copyright terms: Public domain | W3C validator |