| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrginv | Unicode version | ||
| Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrginv.1 |
|
| subrginv.2 |
|
| subrginv.3 |
|
| subrginv.4 |
|
| Ref | Expression |
|---|---|
| subrginv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 14184 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | subrginv.1 |
. . . . . . . 8
| |
| 4 | 3 | subrgbas 14188 |
. . . . . . 7
|
| 5 | eqid 2229 |
. . . . . . . 8
| |
| 6 | 5 | subrgss 14180 |
. . . . . . 7
|
| 7 | 4, 6 | eqsstrrd 3261 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | 3 | subrgring 14182 |
. . . . . 6
|
| 10 | subrginv.3 |
. . . . . . 7
| |
| 11 | subrginv.4 |
. . . . . . 7
| |
| 12 | eqid 2229 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ringinvcl 14083 |
. . . . . 6
|
| 14 | 9, 13 | sylan 283 |
. . . . 5
|
| 15 | 8, 14 | sseldd 3225 |
. . . 4
|
| 16 | eqidd 2230 |
. . . . . 6
| |
| 17 | 10 | a1i 9 |
. . . . . 6
|
| 18 | 9 | adantr 276 |
. . . . . . 7
|
| 19 | ringsrg 14005 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . 6
| |
| 22 | 16, 17, 20, 21 | unitcld 14066 |
. . . . 5
|
| 23 | 8, 22 | sseldd 3225 |
. . . 4
|
| 24 | eqid 2229 |
. . . . . . 7
| |
| 25 | 3, 24, 10 | subrguss 14194 |
. . . . . 6
|
| 26 | 25 | sselda 3224 |
. . . . 5
|
| 27 | subrginv.2 |
. . . . . 6
| |
| 28 | 24, 27, 5 | ringinvcl 14083 |
. . . . 5
|
| 29 | 1, 26, 28 | syl2an2r 597 |
. . . 4
|
| 30 | eqid 2229 |
. . . . 5
| |
| 31 | 5, 30 | ringass 13974 |
. . . 4
|
| 32 | 2, 15, 23, 29, 31 | syl13anc 1273 |
. . 3
|
| 33 | eqid 2229 |
. . . . . . 7
| |
| 34 | eqid 2229 |
. . . . . . 7
| |
| 35 | 10, 11, 33, 34 | unitlinv 14084 |
. . . . . 6
|
| 36 | 9, 35 | sylan 283 |
. . . . 5
|
| 37 | 3, 30 | ressmulrg 13173 |
. . . . . . . 8
|
| 38 | 1, 37 | mpdan 421 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | 39 | oveqd 6017 |
. . . . 5
|
| 41 | eqid 2229 |
. . . . . . 7
| |
| 42 | 3, 41 | subrg1 14189 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | 36, 40, 43 | 3eqtr4d 2272 |
. . . 4
|
| 45 | 44 | oveq1d 6015 |
. . 3
|
| 46 | 24, 27, 30, 41 | unitrinv 14085 |
. . . . 5
|
| 47 | 1, 26, 46 | syl2an2r 597 |
. . . 4
|
| 48 | 47 | oveq2d 6016 |
. . 3
|
| 49 | 32, 45, 48 | 3eqtr3d 2270 |
. 2
|
| 50 | 5, 30, 41 | ringlidm 13981 |
. . 3
|
| 51 | 1, 29, 50 | syl2an2r 597 |
. 2
|
| 52 | 5, 30, 41 | ringridm 13982 |
. . 3
|
| 53 | 1, 15, 52 | syl2an2r 597 |
. 2
|
| 54 | 49, 51, 53 | 3eqtr3d 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-tpos 6389 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-subg 13702 df-cmn 13818 df-abl 13819 df-mgp 13879 df-ur 13918 df-srg 13922 df-ring 13956 df-oppr 14026 df-dvdsr 14047 df-unit 14048 df-invr 14079 df-subrg 14177 |
| This theorem is referenced by: subrgdv 14196 subrgunit 14197 subrgugrp 14198 |
| Copyright terms: Public domain | W3C validator |