ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrginv Unicode version

Theorem subrginv 13452
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1  |-  S  =  ( Rs  A )
subrginv.2  |-  I  =  ( invr `  R
)
subrginv.3  |-  U  =  (Unit `  S )
subrginv.4  |-  J  =  ( invr `  S
)
Assertion
Ref Expression
subrginv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 13441 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 276 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  R  e.  Ring )
3 subrginv.1 . . . . . . . 8  |-  S  =  ( Rs  A )
43subrgbas 13445 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
5 eqid 2187 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
65subrgss 13437 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
74, 6eqsstrrd 3204 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
87adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( Base `  S )  C_  ( Base `  R )
)
93subrgring 13439 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 subrginv.3 . . . . . . 7  |-  U  =  (Unit `  S )
11 subrginv.4 . . . . . . 7  |-  J  =  ( invr `  S
)
12 eqid 2187 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
1310, 11, 12ringinvcl 13368 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
149, 13sylan 283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
158, 14sseldd 3168 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  R
) )
16 eqidd 2188 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( Base `  S )  =  ( Base `  S
) )
1710a1i 9 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  U  =  (Unit `  S )
)
189adantr 276 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  S  e.  Ring )
19 ringsrg 13292 . . . . . . 7  |-  ( S  e.  Ring  ->  S  e. SRing
)
2018, 19syl 14 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  S  e. SRing )
21 simpr 110 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  U )
2216, 17, 20, 21unitcld 13351 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  S
) )
238, 22sseldd 3168 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
24 eqid 2187 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
253, 24, 10subrguss 13451 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
2625sselda 3167 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  (Unit `  R )
)
27 subrginv.2 . . . . . 6  |-  I  =  ( invr `  R
)
2824, 27, 5ringinvcl 13368 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( I `  X )  e.  (
Base `  R )
)
291, 26, 28syl2an2r 595 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  e.  ( Base `  R
) )
30 eqid 2187 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30ringass 13263 . . . 4  |-  ( ( R  e.  Ring  /\  (
( J `  X
)  e.  ( Base `  R )  /\  X  e.  ( Base `  R
)  /\  ( I `  X )  e.  (
Base `  R )
) )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
322, 15, 23, 29, 31syl13anc 1250 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
33 eqid 2187 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
34 eqid 2187 . . . . . . 7  |-  ( 1r
`  S )  =  ( 1r `  S
)
3510, 11, 33, 34unitlinv 13369 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
369, 35sylan 283 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
373, 30ressmulrg 12617 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
381, 37mpdan 421 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
3938adantr 276 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( .r `  R )  =  ( .r `  S
) )
4039oveqd 5905 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( ( J `
 X ) ( .r `  S ) X ) )
41 eqid 2187 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
423, 41subrg1 13446 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4342adantr 276 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  S
) )
4436, 40, 433eqtr4d 2230 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
4544oveq1d 5903 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( 1r
`  R ) ( .r `  R ) ( I `  X
) ) )
4624, 27, 30, 41unitrinv 13370 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( X
( .r `  R
) ( I `  X ) )  =  ( 1r `  R
) )
471, 26, 46syl2an2r 595 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
4847oveq2d 5904 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( X ( .r `  R
) ( I `  X ) ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
4932, 45, 483eqtr3d 2228 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
505, 30, 41ringlidm 13270 . . 3  |-  ( ( R  e.  Ring  /\  (
I `  X )  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
511, 29, 50syl2an2r 595 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
525, 30, 41ringridm 13271 . . 3  |-  ( ( R  e.  Ring  /\  ( J `  X )  e.  ( Base `  R
) )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
531, 15, 52syl2an2r 595 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
5449, 51, 533eqtr3d 2228 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158    C_ wss 3141   ` cfv 5228  (class class class)co 5888   Basecbs 12475   ↾s cress 12476   .rcmulr 12551   1rcur 13206  SRingcsrg 13210   Ringcrg 13243  Unitcui 13330   invrcinvr 13363  SubRingcsubrg 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-tpos 6259  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483  df-plusg 12563  df-mulr 12564  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-subg 13061  df-cmn 13122  df-abl 13123  df-mgp 13171  df-ur 13207  df-srg 13211  df-ring 13245  df-oppr 13311  df-dvdsr 13332  df-unit 13333  df-invr 13364  df-subrg 13434
This theorem is referenced by:  subrgdv  13453  subrgunit  13454  subrgugrp  13455
  Copyright terms: Public domain W3C validator