| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrginv | Unicode version | ||
| Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| subrginv.1 |
|
| subrginv.2 |
|
| subrginv.3 |
|
| subrginv.4 |
|
| Ref | Expression |
|---|---|
| subrginv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgrcl 13906 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | subrginv.1 |
. . . . . . . 8
| |
| 4 | 3 | subrgbas 13910 |
. . . . . . 7
|
| 5 | eqid 2204 |
. . . . . . . 8
| |
| 6 | 5 | subrgss 13902 |
. . . . . . 7
|
| 7 | 4, 6 | eqsstrrd 3229 |
. . . . . 6
|
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | 3 | subrgring 13904 |
. . . . . 6
|
| 10 | subrginv.3 |
. . . . . . 7
| |
| 11 | subrginv.4 |
. . . . . . 7
| |
| 12 | eqid 2204 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | ringinvcl 13805 |
. . . . . 6
|
| 14 | 9, 13 | sylan 283 |
. . . . 5
|
| 15 | 8, 14 | sseldd 3193 |
. . . 4
|
| 16 | eqidd 2205 |
. . . . . 6
| |
| 17 | 10 | a1i 9 |
. . . . . 6
|
| 18 | 9 | adantr 276 |
. . . . . . 7
|
| 19 | ringsrg 13727 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | simpr 110 |
. . . . . 6
| |
| 22 | 16, 17, 20, 21 | unitcld 13788 |
. . . . 5
|
| 23 | 8, 22 | sseldd 3193 |
. . . 4
|
| 24 | eqid 2204 |
. . . . . . 7
| |
| 25 | 3, 24, 10 | subrguss 13916 |
. . . . . 6
|
| 26 | 25 | sselda 3192 |
. . . . 5
|
| 27 | subrginv.2 |
. . . . . 6
| |
| 28 | 24, 27, 5 | ringinvcl 13805 |
. . . . 5
|
| 29 | 1, 26, 28 | syl2an2r 595 |
. . . 4
|
| 30 | eqid 2204 |
. . . . 5
| |
| 31 | 5, 30 | ringass 13696 |
. . . 4
|
| 32 | 2, 15, 23, 29, 31 | syl13anc 1251 |
. . 3
|
| 33 | eqid 2204 |
. . . . . . 7
| |
| 34 | eqid 2204 |
. . . . . . 7
| |
| 35 | 10, 11, 33, 34 | unitlinv 13806 |
. . . . . 6
|
| 36 | 9, 35 | sylan 283 |
. . . . 5
|
| 37 | 3, 30 | ressmulrg 12895 |
. . . . . . . 8
|
| 38 | 1, 37 | mpdan 421 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | 39 | oveqd 5951 |
. . . . 5
|
| 41 | eqid 2204 |
. . . . . . 7
| |
| 42 | 3, 41 | subrg1 13911 |
. . . . . 6
|
| 43 | 42 | adantr 276 |
. . . . 5
|
| 44 | 36, 40, 43 | 3eqtr4d 2247 |
. . . 4
|
| 45 | 44 | oveq1d 5949 |
. . 3
|
| 46 | 24, 27, 30, 41 | unitrinv 13807 |
. . . . 5
|
| 47 | 1, 26, 46 | syl2an2r 595 |
. . . 4
|
| 48 | 47 | oveq2d 5950 |
. . 3
|
| 49 | 32, 45, 48 | 3eqtr3d 2245 |
. 2
|
| 50 | 5, 30, 41 | ringlidm 13703 |
. . 3
|
| 51 | 1, 29, 50 | syl2an2r 595 |
. 2
|
| 52 | 5, 30, 41 | ringridm 13704 |
. . 3
|
| 53 | 1, 15, 52 | syl2an2r 595 |
. 2
|
| 54 | 49, 51, 53 | 3eqtr3d 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-tpos 6321 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-subg 13424 df-cmn 13540 df-abl 13541 df-mgp 13601 df-ur 13640 df-srg 13644 df-ring 13678 df-oppr 13748 df-dvdsr 13769 df-unit 13770 df-invr 13801 df-subrg 13899 |
| This theorem is referenced by: subrgdv 13918 subrgunit 13919 subrgugrp 13920 |
| Copyright terms: Public domain | W3C validator |