ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnneg Unicode version

Theorem lspsnneg 14297
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v  |-  V  =  ( Base `  W
)
lspsnneg.m  |-  M  =  ( invg `  W )
lspsnneg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnneg  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lspsnneg.m . . . . . 6  |-  M  =  ( invg `  W )
3 eqid 2207 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2207 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2207 . . . . . 6  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
6 eqid 2207 . . . . . 6  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
71, 2, 3, 4, 5, 6lmodvneg1 14207 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X )  =  ( M `
 X ) )
87sneqd 3656 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) }  =  {
( M `  X
) } )
98fveq2d 5603 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  =  ( N `  {
( M `  X
) } ) )
10 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
113lmodfgrp 14173 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
12 eqid 2207 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
133, 12, 5lmod1cl 14192 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
1412, 6grpinvcl 13495 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
1511, 13, 14syl2anc 411 . . . . 5  |-  ( W  e.  LMod  ->  ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
1615adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
17 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
18 lspsnneg.n . . . . 5  |-  N  =  ( LSpan `  W )
193, 12, 1, 4, 18lspsnvsi 14295 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
2010, 16, 17, 19syl3anc 1250 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
219, 20eqsstrrd 3238 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  C_  ( N `  { X } ) )
221, 2lmodvnegcl 14205 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  X )  e.  V )
231, 2, 3, 4, 5, 6lmodvneg1 14207 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( M `  X )  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
2422, 23syldan 282 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
25 lmodgrp 14171 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
261, 2grpinvinv 13514 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( M `  ( M `  X )
)  =  X )
2725, 26sylan 283 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  ( M `  X ) )  =  X )
2824, 27eqtrd 2240 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  X )
2928sneqd 3656 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) }  =  { X } )
3029fveq2d 5603 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  =  ( N `  { X } ) )
313, 12, 1, 4, 18lspsnvsi 14295 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  ( M `  X )  e.  V
)  ->  ( N `  { ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3210, 16, 22, 31syl3anc 1250 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3330, 32eqsstrrd 3238 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( M `  X ) } ) )
3421, 33eqssd 3218 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   {csn 3643   ` cfv 5290  (class class class)co 5967   Basecbs 12947  Scalarcsca 13027   .scvsca 13028   Grpcgrp 13447   invgcminusg 13448   1rcur 13836   LModclmod 14164   LSpanclspn 14263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-mgp 13798  df-ur 13837  df-ring 13875  df-lmod 14166  df-lssm 14230  df-lsp 14264
This theorem is referenced by:  lspsnsub  14298  lmodindp1  14305
  Copyright terms: Public domain W3C validator