ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnneg Unicode version

Theorem lspsnneg 13697
Description: Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnneg.v  |-  V  =  ( Base `  W
)
lspsnneg.m  |-  M  =  ( invg `  W )
lspsnneg.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnneg  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )

Proof of Theorem lspsnneg
StepHypRef Expression
1 lspsnneg.v . . . . . 6  |-  V  =  ( Base `  W
)
2 lspsnneg.m . . . . . 6  |-  M  =  ( invg `  W )
3 eqid 2189 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2189 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
5 eqid 2189 . . . . . 6  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
6 eqid 2189 . . . . . 6  |-  ( invg `  (Scalar `  W ) )  =  ( invg `  (Scalar `  W ) )
71, 2, 3, 4, 5, 6lmodvneg1 13607 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X )  =  ( M `
 X ) )
87sneqd 3620 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) }  =  {
( M `  X
) } )
98fveq2d 5534 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  =  ( N `  {
( M `  X
) } ) )
10 simpl 109 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
113lmodfgrp 13573 . . . . . 6  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Grp )
12 eqid 2189 . . . . . . 7  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
133, 12, 5lmod1cl 13592 . . . . . 6  |-  ( W  e.  LMod  ->  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )
1412, 6grpinvcl 12958 . . . . . 6  |-  ( ( (Scalar `  W )  e.  Grp  /\  ( 1r
`  (Scalar `  W )
)  e.  ( Base `  (Scalar `  W )
) )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
1511, 13, 14syl2anc 411 . . . . 5  |-  ( W  e.  LMod  ->  ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W ) ) )
1615adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
) )
17 simpr 110 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
18 lspsnneg.n . . . . 5  |-  N  =  ( LSpan `  W )
193, 12, 1, 4, 18lspsnvsi 13695 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
2010, 16, 17, 19syl3anc 1249 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) X ) } )  C_  ( N `  { X } ) )
219, 20eqsstrrd 3207 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  C_  ( N `  { X } ) )
221, 2lmodvnegcl 13605 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  X )  e.  V )
231, 2, 3, 4, 5, 6lmodvneg1 13607 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( M `  X )  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
2422, 23syldan 282 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  ( M `
 ( M `  X ) ) )
25 lmodgrp 13571 . . . . . . 7  |-  ( W  e.  LMod  ->  W  e. 
Grp )
261, 2grpinvinv 12977 . . . . . . 7  |-  ( ( W  e.  Grp  /\  X  e.  V )  ->  ( M `  ( M `  X )
)  =  X )
2725, 26sylan 283 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( M `  ( M `  X ) )  =  X )
2824, 27eqtrd 2222 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) )  =  X )
2928sneqd 3620 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { ( ( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) }  =  { X } )
3029fveq2d 5534 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  =  ( N `  { X } ) )
313, 12, 1, 4, 18lspsnvsi 13695 . . . 4  |-  ( ( W  e.  LMod  /\  (
( invg `  (Scalar `  W ) ) `
 ( 1r `  (Scalar `  W ) ) )  e.  ( Base `  (Scalar `  W )
)  /\  ( M `  X )  e.  V
)  ->  ( N `  { ( ( ( invg `  (Scalar `  W ) ) `  ( 1r `  (Scalar `  W ) ) ) ( .s `  W
) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3210, 16, 22, 31syl3anc 1249 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { (
( ( invg `  (Scalar `  W )
) `  ( 1r `  (Scalar `  W )
) ) ( .s
`  W ) ( M `  X ) ) } )  C_  ( N `  { ( M `  X ) } ) )
3330, 32eqsstrrd 3207 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  ( N `  { ( M `  X ) } ) )
3421, 33eqssd 3187 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { ( M `  X ) } )  =  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    C_ wss 3144   {csn 3607   ` cfv 5231  (class class class)co 5891   Basecbs 12480  Scalarcsca 12558   .scvsca 12559   Grpcgrp 12911   invgcminusg 12912   1rcur 13274   LModclmod 13564   LSpanclspn 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-5 8999  df-6 9000  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-plusg 12568  df-mulr 12569  df-sca 12571  df-vsca 12572  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915  df-sbg 12916  df-mgp 13236  df-ur 13275  df-ring 13313  df-lmod 13566  df-lssm 13630  df-lsp 13664
This theorem is referenced by:  lspsnsub  13698  lmodindp1  13705
  Copyright terms: Public domain W3C validator