ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss3 Unicode version

Theorem islss3 13935
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x  |-  X  =  ( Ws  U )
islss3.v  |-  V  =  ( Base `  W
)
islss3.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss3  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )

Proof of Theorem islss3
Dummy variables  a  b  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . 4  |-  V  =  ( Base `  W
)
2 islss3.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 13916 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  V )
4 islss3.x . . . . . . 7  |-  X  =  ( Ws  U )
54a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  X  =  ( Ws  U ) )
61a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  =  ( Base `  W
) )
7 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  LMod )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
95, 6, 7, 8ressbas2d 12746 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  =  ( Base `  X
) )
103, 9syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
114a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
12 eqidd 2197 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  W
) )
13 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  S )
14 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1511, 12, 13, 14ressplusgd 12806 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  X
) )
16 eqid 2196 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
174, 16ressscag 12860 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
18 eqid 2196 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
194, 18ressvscag 12861 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .s `  W )  =  ( .s `  X
) )
20 eqidd 2197 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
21 eqidd 2197 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  (Scalar `  W
) )  =  ( +g  `  (Scalar `  W ) ) )
22 eqidd 2197 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .r `  (Scalar `  W
) )  =  ( .r `  (Scalar `  W ) ) )
23 eqidd 2197 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 1r `  (Scalar `  W
) )  =  ( 1r `  (Scalar `  W ) ) )
2416lmodring 13851 . . . . 5  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
2524adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  e.  Ring )
262lsssubg 13933 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
274subggrp 13307 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  X  e.  Grp )
2826, 27syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  Grp )
29 eqid 2196 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3016, 18, 29, 2lssvscl 13931 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U )
)  ->  ( x
( .s `  W
) a )  e.  U )
31303impb 1201 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  (
Base `  (Scalar `  W
) )  /\  a  e.  U )  ->  (
x ( .s `  W ) a )  e.  U )
32 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  W  e.  LMod )
33 simpr1 1005 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
343adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  U  C_  V
)
35 simpr2 1006 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  U )
3634, 35sseldd 3184 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  V )
37 simpr3 1007 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  U )
3834, 37sseldd 3184 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  V )
39 eqid 2196 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
401, 39, 16, 18, 29lmodvsdi 13867 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) ( a ( +g  `  W
) b ) )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) ( x ( .s
`  W ) b ) ) )
4132, 33, 36, 38, 40syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  ( x
( .s `  W
) ( a ( +g  `  W ) b ) )  =  ( ( x ( .s `  W ) a ) ( +g  `  W ) ( x ( .s `  W
) b ) ) )
42 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  W  e.  LMod )
43 simpr1 1005 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
44 simpr2 1006 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
453adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  U  C_  V )
46 simpr3 1007 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  U )
4745, 46sseldd 3184 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  V )
48 eqid 2196 . . . . . 6  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
491, 39, 16, 18, 29, 48lmodvsdir 13868 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
5042, 43, 44, 47, 49syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
51 eqid 2196 . . . . . 6  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
521, 16, 18, 29, 51lmodvsass 13869 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
5342, 43, 44, 47, 52syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
543sselda 3183 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  x  e.  V )
55 eqid 2196 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
561, 16, 18, 55lmodvs1 13872 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) x )  =  x )
5756adantlr 477 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  V
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5854, 57syldan 282 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5910, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58islmodd 13849 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
603, 59jca 306 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  V  /\  X  e.  LMod ) )
61 simprl 529 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  C_  V )
6261, 9syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  =  ( Base `  X ) )
63 basfn 12736 . . . . . . . 8  |-  Base  Fn  _V
64 simprr 531 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  LMod )
6564elexd 2776 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  _V )
66 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  Base  /\  X  e. 
dom  Base )  ->  ( Base `  X )  e. 
_V )
6766funfni 5358 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  X  e.  _V )  ->  ( Base `  X )  e. 
_V )
6863, 65, 67sylancr 414 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  _V )
6962, 68eqeltrd 2273 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  _V )
704, 16ressscag 12860 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  X ) )
7169, 70syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  W )  =  (Scalar `  X )
)
7271eqcomd 2202 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  X )  =  (Scalar `  W )
)
73 eqidd 2197 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  (Scalar `  X
) )  =  (
Base `  (Scalar `  X
) ) )
741a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  V  =  ( Base `  W ) )
754a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  =  ( Ws  U
) )
76 eqidd 2197 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  W
) )
77 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  W  e.  LMod )
7875, 76, 69, 77ressplusgd 12806 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  X
) )
7978eqcomd 2202 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  X )  =  ( +g  `  W
) )
804, 18ressvscag 12861 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  ( .s `  W )  =  ( .s `  X
) )
8169, 80syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  W
)  =  ( .s
`  X ) )
8281eqcomd 2202 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  X
)  =  ( .s
`  W ) )
832a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  S  =  ( LSubSp `  W ) )
8462, 61eqsstrrd 3220 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  C_  V )
85 lmodgrp 13850 . . . . . 6  |-  ( X  e.  LMod  ->  X  e. 
Grp )
8685ad2antll 491 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  Grp )
87 eqid 2196 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
88 eqid 2196 . . . . . 6  |-  ( 0g
`  X )  =  ( 0g `  X
)
8987, 88grpidcl 13161 . . . . 5  |-  ( X  e.  Grp  ->  ( 0g `  X )  e.  ( Base `  X
) )
90 elex2 2779 . . . . 5  |-  ( ( 0g `  X )  e.  ( Base `  X
)  ->  E. j 
j  e.  ( Base `  X ) )
9186, 89, 903syl 17 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  E. j  j  e.  ( Base `  X )
)
9264adantr 276 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  X  e.  LMod )
93 eqid 2196 . . . . . . 7  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
9487, 93lss1 13918 . . . . . 6  |-  ( X  e.  LMod  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
9592, 94syl 14 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
96 simpr 110 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( x  e.  ( Base `  (Scalar `  X ) )  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X
) ) )
97 eqid 2196 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
98 eqid 2196 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
99 eqid 2196 . . . . . 6  |-  ( +g  `  X )  =  ( +g  `  X )
100 eqid 2196 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
10197, 98, 99, 100, 93lssclg 13920 . . . . 5  |-  ( ( X  e.  LMod  /\  ( Base `  X )  e.  ( LSubSp `  X )  /\  ( x  e.  (
Base `  (Scalar `  X
) )  /\  a  e.  ( Base `  X
)  /\  b  e.  ( Base `  X )
) )  ->  (
( x ( .s
`  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10292, 95, 96, 101syl3anc 1249 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10372, 73, 74, 79, 82, 83, 84, 91, 102, 77islssmd 13915 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  S )
10462, 103eqeltrd 2273 . 2  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  S )
10560, 104impbida 596 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    C_ wss 3157    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   0gc0g 12927   Grpcgrp 13132  SubGrpcsubg 13297   1rcur 13515   Ringcrg 13552   LModclmod 13843   LSubSpclss 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909
This theorem is referenced by:  lsslmod  13936  lsslss  13937
  Copyright terms: Public domain W3C validator