ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss3 Unicode version

Theorem islss3 13563
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x  |-  X  =  ( Ws  U )
islss3.v  |-  V  =  ( Base `  W
)
islss3.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss3  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )

Proof of Theorem islss3
Dummy variables  a  b  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . 4  |-  V  =  ( Base `  W
)
2 islss3.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 13544 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  V )
4 islss3.x . . . . . . 7  |-  X  =  ( Ws  U )
54a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  X  =  ( Ws  U ) )
61a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  =  ( Base `  W
) )
7 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  LMod )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
95, 6, 7, 8ressbas2d 12541 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  =  ( Base `  X
) )
103, 9syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
114a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
12 eqidd 2188 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  W
) )
13 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  S )
14 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1511, 12, 13, 14ressplusgd 12601 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  X
) )
16 eqid 2187 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
174, 16ressscag 12655 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
18 eqid 2187 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
194, 18ressvscag 12656 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .s `  W )  =  ( .s `  X
) )
20 eqidd 2188 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
21 eqidd 2188 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  (Scalar `  W
) )  =  ( +g  `  (Scalar `  W ) ) )
22 eqidd 2188 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .r `  (Scalar `  W
) )  =  ( .r `  (Scalar `  W ) ) )
23 eqidd 2188 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 1r `  (Scalar `  W
) )  =  ( 1r `  (Scalar `  W ) ) )
2416lmodring 13479 . . . . 5  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
2524adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  e.  Ring )
262lsssubg 13561 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
274subggrp 13068 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  X  e.  Grp )
2826, 27syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  Grp )
29 eqid 2187 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3016, 18, 29, 2lssvscl 13559 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U )
)  ->  ( x
( .s `  W
) a )  e.  U )
31303impb 1200 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  (
Base `  (Scalar `  W
) )  /\  a  e.  U )  ->  (
x ( .s `  W ) a )  e.  U )
32 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  W  e.  LMod )
33 simpr1 1004 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
343adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  U  C_  V
)
35 simpr2 1005 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  U )
3634, 35sseldd 3168 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  V )
37 simpr3 1006 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  U )
3834, 37sseldd 3168 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  V )
39 eqid 2187 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
401, 39, 16, 18, 29lmodvsdi 13495 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) ( a ( +g  `  W
) b ) )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) ( x ( .s
`  W ) b ) ) )
4132, 33, 36, 38, 40syl13anc 1250 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  ( x
( .s `  W
) ( a ( +g  `  W ) b ) )  =  ( ( x ( .s `  W ) a ) ( +g  `  W ) ( x ( .s `  W
) b ) ) )
42 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  W  e.  LMod )
43 simpr1 1004 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
44 simpr2 1005 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
453adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  U  C_  V )
46 simpr3 1006 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  U )
4745, 46sseldd 3168 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  V )
48 eqid 2187 . . . . . 6  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
491, 39, 16, 18, 29, 48lmodvsdir 13496 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
5042, 43, 44, 47, 49syl13anc 1250 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
51 eqid 2187 . . . . . 6  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
521, 16, 18, 29, 51lmodvsass 13497 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
5342, 43, 44, 47, 52syl13anc 1250 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
543sselda 3167 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  x  e.  V )
55 eqid 2187 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
561, 16, 18, 55lmodvs1 13500 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) x )  =  x )
5756adantlr 477 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  V
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5854, 57syldan 282 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5910, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58islmodd 13477 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
603, 59jca 306 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  V  /\  X  e.  LMod ) )
61 simprl 529 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  C_  V )
6261, 9syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  =  ( Base `  X ) )
63 basfn 12533 . . . . . . . 8  |-  Base  Fn  _V
64 simprr 531 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  LMod )
6564elexd 2762 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  _V )
66 funfvex 5544 . . . . . . . . 9  |-  ( ( Fun  Base  /\  X  e. 
dom  Base )  ->  ( Base `  X )  e. 
_V )
6766funfni 5328 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  X  e.  _V )  ->  ( Base `  X )  e. 
_V )
6863, 65, 67sylancr 414 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  _V )
6962, 68eqeltrd 2264 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  _V )
704, 16ressscag 12655 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  X ) )
7169, 70syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  W )  =  (Scalar `  X )
)
7271eqcomd 2193 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  X )  =  (Scalar `  W )
)
73 eqidd 2188 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  (Scalar `  X
) )  =  (
Base `  (Scalar `  X
) ) )
741a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  V  =  ( Base `  W ) )
754a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  =  ( Ws  U
) )
76 eqidd 2188 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  W
) )
77 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  W  e.  LMod )
7875, 76, 69, 77ressplusgd 12601 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  X
) )
7978eqcomd 2193 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  X )  =  ( +g  `  W
) )
804, 18ressvscag 12656 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  ( .s `  W )  =  ( .s `  X
) )
8169, 80syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  W
)  =  ( .s
`  X ) )
8281eqcomd 2193 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  X
)  =  ( .s
`  W ) )
832a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  S  =  ( LSubSp `  W ) )
8462, 61eqsstrrd 3204 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  C_  V )
85 lmodgrp 13478 . . . . . 6  |-  ( X  e.  LMod  ->  X  e. 
Grp )
8685ad2antll 491 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  Grp )
87 eqid 2187 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
88 eqid 2187 . . . . . 6  |-  ( 0g
`  X )  =  ( 0g `  X
)
8987, 88grpidcl 12925 . . . . 5  |-  ( X  e.  Grp  ->  ( 0g `  X )  e.  ( Base `  X
) )
90 elex2 2765 . . . . 5  |-  ( ( 0g `  X )  e.  ( Base `  X
)  ->  E. j 
j  e.  ( Base `  X ) )
9186, 89, 903syl 17 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  E. j  j  e.  ( Base `  X )
)
9264adantr 276 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  X  e.  LMod )
93 eqid 2187 . . . . . . 7  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
9487, 93lss1 13546 . . . . . 6  |-  ( X  e.  LMod  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
9592, 94syl 14 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
96 simpr 110 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( x  e.  ( Base `  (Scalar `  X ) )  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X
) ) )
97 eqid 2187 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
98 eqid 2187 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
99 eqid 2187 . . . . . 6  |-  ( +g  `  X )  =  ( +g  `  X )
100 eqid 2187 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
10197, 98, 99, 100, 93lssclg 13548 . . . . 5  |-  ( ( X  e.  LMod  /\  ( Base `  X )  e.  ( LSubSp `  X )  /\  ( x  e.  (
Base `  (Scalar `  X
) )  /\  a  e.  ( Base `  X
)  /\  b  e.  ( Base `  X )
) )  ->  (
( x ( .s
`  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10292, 95, 96, 101syl3anc 1248 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10372, 73, 74, 79, 82, 83, 84, 91, 102, 77islssmd 13543 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  S )
10462, 103eqeltrd 2264 . 2  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  S )
10560, 104impbida 596 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2158   _Vcvv 2749    C_ wss 3141    Fn wfn 5223   ` cfv 5228  (class class class)co 5888   Basecbs 12475   ↾s cress 12476   +g cplusg 12550   .rcmulr 12551  Scalarcsca 12553   .scvsca 12554   0gc0g 12722   Grpcgrp 12898  SubGrpcsubg 13058   1rcur 13206   Ringcrg 13243   LModclmod 13471   LSubSpclss 13536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483  df-plusg 12563  df-mulr 12564  df-sca 12566  df-vsca 12567  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-sbg 12903  df-subg 13061  df-mgp 13171  df-ur 13207  df-ring 13245  df-lmod 13473  df-lssm 13537
This theorem is referenced by:  lsslmod  13564  lsslss  13565
  Copyright terms: Public domain W3C validator