ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss3 Unicode version

Theorem islss3 14256
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x  |-  X  =  ( Ws  U )
islss3.v  |-  V  =  ( Base `  W
)
islss3.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss3  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )

Proof of Theorem islss3
Dummy variables  a  b  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . 4  |-  V  =  ( Base `  W
)
2 islss3.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 14237 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  V )
4 islss3.x . . . . . . 7  |-  X  =  ( Ws  U )
54a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  X  =  ( Ws  U ) )
61a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  =  ( Base `  W
) )
7 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  LMod )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
95, 6, 7, 8ressbas2d 13015 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  =  ( Base `  X
) )
103, 9syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
114a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
12 eqidd 2208 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  W
) )
13 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  S )
14 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1511, 12, 13, 14ressplusgd 13076 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  X
) )
16 eqid 2207 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
174, 16ressscag 13130 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
18 eqid 2207 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
194, 18ressvscag 13131 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .s `  W )  =  ( .s `  X
) )
20 eqidd 2208 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
21 eqidd 2208 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  (Scalar `  W
) )  =  ( +g  `  (Scalar `  W ) ) )
22 eqidd 2208 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .r `  (Scalar `  W
) )  =  ( .r `  (Scalar `  W ) ) )
23 eqidd 2208 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 1r `  (Scalar `  W
) )  =  ( 1r `  (Scalar `  W ) ) )
2416lmodring 14172 . . . . 5  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
2524adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  e.  Ring )
262lsssubg 14254 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
274subggrp 13628 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  X  e.  Grp )
2826, 27syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  Grp )
29 eqid 2207 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3016, 18, 29, 2lssvscl 14252 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U )
)  ->  ( x
( .s `  W
) a )  e.  U )
31303impb 1202 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  (
Base `  (Scalar `  W
) )  /\  a  e.  U )  ->  (
x ( .s `  W ) a )  e.  U )
32 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  W  e.  LMod )
33 simpr1 1006 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
343adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  U  C_  V
)
35 simpr2 1007 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  U )
3634, 35sseldd 3202 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  V )
37 simpr3 1008 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  U )
3834, 37sseldd 3202 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  V )
39 eqid 2207 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
401, 39, 16, 18, 29lmodvsdi 14188 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) ( a ( +g  `  W
) b ) )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) ( x ( .s
`  W ) b ) ) )
4132, 33, 36, 38, 40syl13anc 1252 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  ( x
( .s `  W
) ( a ( +g  `  W ) b ) )  =  ( ( x ( .s `  W ) a ) ( +g  `  W ) ( x ( .s `  W
) b ) ) )
42 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  W  e.  LMod )
43 simpr1 1006 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
44 simpr2 1007 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
453adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  U  C_  V )
46 simpr3 1008 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  U )
4745, 46sseldd 3202 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  V )
48 eqid 2207 . . . . . 6  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
491, 39, 16, 18, 29, 48lmodvsdir 14189 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
5042, 43, 44, 47, 49syl13anc 1252 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
51 eqid 2207 . . . . . 6  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
521, 16, 18, 29, 51lmodvsass 14190 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
5342, 43, 44, 47, 52syl13anc 1252 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
543sselda 3201 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  x  e.  V )
55 eqid 2207 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
561, 16, 18, 55lmodvs1 14193 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) x )  =  x )
5756adantlr 477 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  V
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5854, 57syldan 282 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5910, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58islmodd 14170 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
603, 59jca 306 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  V  /\  X  e.  LMod ) )
61 simprl 529 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  C_  V )
6261, 9syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  =  ( Base `  X ) )
63 basfn 13005 . . . . . . . 8  |-  Base  Fn  _V
64 simprr 531 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  LMod )
6564elexd 2790 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  _V )
66 funfvex 5616 . . . . . . . . 9  |-  ( ( Fun  Base  /\  X  e. 
dom  Base )  ->  ( Base `  X )  e. 
_V )
6766funfni 5395 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  X  e.  _V )  ->  ( Base `  X )  e. 
_V )
6863, 65, 67sylancr 414 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  _V )
6962, 68eqeltrd 2284 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  _V )
704, 16ressscag 13130 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  X ) )
7169, 70syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  W )  =  (Scalar `  X )
)
7271eqcomd 2213 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  X )  =  (Scalar `  W )
)
73 eqidd 2208 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  (Scalar `  X
) )  =  (
Base `  (Scalar `  X
) ) )
741a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  V  =  ( Base `  W ) )
754a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  =  ( Ws  U
) )
76 eqidd 2208 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  W
) )
77 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  W  e.  LMod )
7875, 76, 69, 77ressplusgd 13076 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  X
) )
7978eqcomd 2213 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  X )  =  ( +g  `  W
) )
804, 18ressvscag 13131 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  ( .s `  W )  =  ( .s `  X
) )
8169, 80syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  W
)  =  ( .s
`  X ) )
8281eqcomd 2213 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  X
)  =  ( .s
`  W ) )
832a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  S  =  ( LSubSp `  W ) )
8462, 61eqsstrrd 3238 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  C_  V )
85 lmodgrp 14171 . . . . . 6  |-  ( X  e.  LMod  ->  X  e. 
Grp )
8685ad2antll 491 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  Grp )
87 eqid 2207 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
88 eqid 2207 . . . . . 6  |-  ( 0g
`  X )  =  ( 0g `  X
)
8987, 88grpidcl 13476 . . . . 5  |-  ( X  e.  Grp  ->  ( 0g `  X )  e.  ( Base `  X
) )
90 elex2 2793 . . . . 5  |-  ( ( 0g `  X )  e.  ( Base `  X
)  ->  E. j 
j  e.  ( Base `  X ) )
9186, 89, 903syl 17 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  E. j  j  e.  ( Base `  X )
)
9264adantr 276 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  X  e.  LMod )
93 eqid 2207 . . . . . . 7  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
9487, 93lss1 14239 . . . . . 6  |-  ( X  e.  LMod  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
9592, 94syl 14 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
96 simpr 110 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( x  e.  ( Base `  (Scalar `  X ) )  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X
) ) )
97 eqid 2207 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
98 eqid 2207 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
99 eqid 2207 . . . . . 6  |-  ( +g  `  X )  =  ( +g  `  X )
100 eqid 2207 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
10197, 98, 99, 100, 93lssclg 14241 . . . . 5  |-  ( ( X  e.  LMod  /\  ( Base `  X )  e.  ( LSubSp `  X )  /\  ( x  e.  (
Base `  (Scalar `  X
) )  /\  a  e.  ( Base `  X
)  /\  b  e.  ( Base `  X )
) )  ->  (
( x ( .s
`  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10292, 95, 96, 101syl3anc 1250 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10372, 73, 74, 79, 82, 83, 84, 91, 102, 77islssmd 14236 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  S )
10462, 103eqeltrd 2284 . 2  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  S )
10560, 104impbida 596 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776    C_ wss 3174    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025  Scalarcsca 13027   .scvsca 13028   0gc0g 13203   Grpcgrp 13447  SubGrpcsubg 13618   1rcur 13836   Ringcrg 13873   LModclmod 14164   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-mgp 13798  df-ur 13837  df-ring 13875  df-lmod 14166  df-lssm 14230
This theorem is referenced by:  lsslmod  14257  lsslss  14258
  Copyright terms: Public domain W3C validator