ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss3 Unicode version

Theorem islss3 13875
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x  |-  X  =  ( Ws  U )
islss3.v  |-  V  =  ( Base `  W
)
islss3.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss3  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )

Proof of Theorem islss3
Dummy variables  a  b  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . 4  |-  V  =  ( Base `  W
)
2 islss3.s . . . 4  |-  S  =  ( LSubSp `  W )
31, 2lssssg 13856 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  C_  V )
4 islss3.x . . . . . . 7  |-  X  =  ( Ws  U )
54a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  X  =  ( Ws  U ) )
61a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  V  =  ( Base `  W
) )
7 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  W  e.  LMod )
8 simpr 110 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  C_  V )
95, 6, 7, 8ressbas2d 12686 . . . . 5  |-  ( ( W  e.  LMod  /\  U  C_  V )  ->  U  =  ( Base `  X
) )
103, 9syldan 282 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  =  ( Base `  X
) )
114a1i 9 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  =  ( Ws  U ) )
12 eqidd 2194 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  W
) )
13 simpr 110 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  S )
14 simpl 109 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  W  e.  LMod )
1511, 12, 13, 14ressplusgd 12746 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  W )  =  ( +g  `  X
) )
16 eqid 2193 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
174, 16ressscag 12800 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  =  (Scalar `  X ) )
18 eqid 2193 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
194, 18ressvscag 12801 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .s `  W )  =  ( .s `  X
) )
20 eqidd 2194 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
21 eqidd 2194 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( +g  `  (Scalar `  W
) )  =  ( +g  `  (Scalar `  W ) ) )
22 eqidd 2194 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( .r `  (Scalar `  W
) )  =  ( .r `  (Scalar `  W ) ) )
23 eqidd 2194 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( 1r `  (Scalar `  W
) )  =  ( 1r `  (Scalar `  W ) ) )
2416lmodring 13791 . . . . 5  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
2524adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (Scalar `  W )  e.  Ring )
262lsssubg 13873 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
274subggrp 13247 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  X  e.  Grp )
2826, 27syl 14 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  Grp )
29 eqid 2193 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3016, 18, 29, 2lssvscl 13871 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U )
)  ->  ( x
( .s `  W
) a )  e.  U )
31303impb 1201 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  (
Base `  (Scalar `  W
) )  /\  a  e.  U )  ->  (
x ( .s `  W ) a )  e.  U )
32 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  W  e.  LMod )
33 simpr1 1005 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
343adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  U  C_  V
)
35 simpr2 1006 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  U )
3634, 35sseldd 3180 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  a  e.  V )
37 simpr3 1007 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  U )
3834, 37sseldd 3180 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  b  e.  V )
39 eqid 2193 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
401, 39, 16, 18, 29lmodvsdi 13807 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) ( a ( +g  `  W
) b ) )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) ( x ( .s
`  W ) b ) ) )
4132, 33, 36, 38, 40syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  U  /\  b  e.  U )
)  ->  ( x
( .s `  W
) ( a ( +g  `  W ) b ) )  =  ( ( x ( .s `  W ) a ) ( +g  `  W ) ( x ( .s `  W
) b ) ) )
42 simpll 527 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  W  e.  LMod )
43 simpr1 1005 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
44 simpr2 1006 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
453adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  ->  U  C_  V )
46 simpr3 1007 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  U )
4745, 46sseldd 3180 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
b  e.  V )
48 eqid 2193 . . . . . 6  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
491, 39, 16, 18, 29, 48lmodvsdir 13808 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
5042, 43, 44, 47, 49syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( +g  `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( ( x ( .s `  W
) b ) ( +g  `  W ) ( a ( .s
`  W ) b ) ) )
51 eqid 2193 . . . . . 6  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
521, 16, 18, 29, 51lmodvsass 13809 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  ( Base `  (Scalar `  W
) )  /\  b  e.  V ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
5342, 43, 44, 47, 52syl13anc 1251 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  ( Base `  (Scalar `  W )
)  /\  b  e.  U ) )  -> 
( ( x ( .r `  (Scalar `  W ) ) a ) ( .s `  W ) b )  =  ( x ( .s `  W ) ( a ( .s
`  W ) b ) ) )
543sselda 3179 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  x  e.  V )
55 eqid 2193 . . . . . . 7  |-  ( 1r
`  (Scalar `  W )
)  =  ( 1r
`  (Scalar `  W )
)
561, 16, 18, 55lmodvs1 13812 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  V )  ->  (
( 1r `  (Scalar `  W ) ) ( .s `  W ) x )  =  x )
5756adantlr 477 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  V
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5854, 57syldan 282 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( ( 1r `  (Scalar `  W
) ) ( .s
`  W ) x )  =  x )
5910, 15, 17, 19, 20, 21, 22, 23, 25, 28, 31, 41, 50, 53, 58islmodd 13789 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  X  e.  LMod )
603, 59jca 306 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  V  /\  X  e.  LMod ) )
61 simprl 529 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  C_  V )
6261, 9syldan 282 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  =  ( Base `  X ) )
63 basfn 12676 . . . . . . . 8  |-  Base  Fn  _V
64 simprr 531 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  LMod )
6564elexd 2773 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  _V )
66 funfvex 5571 . . . . . . . . 9  |-  ( ( Fun  Base  /\  X  e. 
dom  Base )  ->  ( Base `  X )  e. 
_V )
6766funfni 5354 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  X  e.  _V )  ->  ( Base `  X )  e. 
_V )
6863, 65, 67sylancr 414 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  _V )
6962, 68eqeltrd 2270 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  _V )
704, 16ressscag 12800 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  X ) )
7169, 70syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  W )  =  (Scalar `  X )
)
7271eqcomd 2199 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
(Scalar `  X )  =  (Scalar `  W )
)
73 eqidd 2194 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  (Scalar `  X
) )  =  (
Base `  (Scalar `  X
) ) )
741a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  V  =  ( Base `  W ) )
754a1i 9 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  =  ( Ws  U
) )
76 eqidd 2194 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  W
) )
77 simpl 109 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  W  e.  LMod )
7875, 76, 69, 77ressplusgd 12746 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  W )  =  ( +g  `  X
) )
7978eqcomd 2199 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( +g  `  X )  =  ( +g  `  W
) )
804, 18ressvscag 12801 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  _V )  ->  ( .s `  W )  =  ( .s `  X
) )
8169, 80syldan 282 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  W
)  =  ( .s
`  X ) )
8281eqcomd 2199 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( .s `  X
)  =  ( .s
`  W ) )
832a1i 9 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  S  =  ( LSubSp `  W ) )
8462, 61eqsstrrd 3216 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  C_  V )
85 lmodgrp 13790 . . . . . 6  |-  ( X  e.  LMod  ->  X  e. 
Grp )
8685ad2antll 491 . . . . 5  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  X  e.  Grp )
87 eqid 2193 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
88 eqid 2193 . . . . . 6  |-  ( 0g
`  X )  =  ( 0g `  X
)
8987, 88grpidcl 13101 . . . . 5  |-  ( X  e.  Grp  ->  ( 0g `  X )  e.  ( Base `  X
) )
90 elex2 2776 . . . . 5  |-  ( ( 0g `  X )  e.  ( Base `  X
)  ->  E. j 
j  e.  ( Base `  X ) )
9186, 89, 903syl 17 . . . 4  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  E. j  j  e.  ( Base `  X )
)
9264adantr 276 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  X  e.  LMod )
93 eqid 2193 . . . . . . 7  |-  ( LSubSp `  X )  =  (
LSubSp `  X )
9487, 93lss1 13858 . . . . . 6  |-  ( X  e.  LMod  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
9592, 94syl 14 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( Base `  X )  e.  (
LSubSp `  X ) )
96 simpr 110 . . . . 5  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( x  e.  ( Base `  (Scalar `  X ) )  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X
) ) )
97 eqid 2193 . . . . . 6  |-  (Scalar `  X )  =  (Scalar `  X )
98 eqid 2193 . . . . . 6  |-  ( Base `  (Scalar `  X )
)  =  ( Base `  (Scalar `  X )
)
99 eqid 2193 . . . . . 6  |-  ( +g  `  X )  =  ( +g  `  X )
100 eqid 2193 . . . . . 6  |-  ( .s
`  X )  =  ( .s `  X
)
10197, 98, 99, 100, 93lssclg 13860 . . . . 5  |-  ( ( X  e.  LMod  /\  ( Base `  X )  e.  ( LSubSp `  X )  /\  ( x  e.  (
Base `  (Scalar `  X
) )  /\  a  e.  ( Base `  X
)  /\  b  e.  ( Base `  X )
) )  ->  (
( x ( .s
`  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10292, 95, 96, 101syl3anc 1249 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  /\  (
x  e.  ( Base `  (Scalar `  X )
)  /\  a  e.  ( Base `  X )  /\  b  e.  ( Base `  X ) ) )  ->  ( (
x ( .s `  X ) a ) ( +g  `  X
) b )  e.  ( Base `  X
) )
10372, 73, 74, 79, 82, 83, 84, 91, 102, 77islssmd 13855 . . 3  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  -> 
( Base `  X )  e.  S )
10462, 103eqeltrd 2270 . 2  |-  ( ( W  e.  LMod  /\  ( U  C_  V  /\  X  e.  LMod ) )  ->  U  e.  S )
10560, 104impbida 596 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  X  e. 
LMod ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    C_ wss 3153    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699   0gc0g 12867   Grpcgrp 13072  SubGrpcsubg 13237   1rcur 13455   Ringcrg 13492   LModclmod 13783   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849
This theorem is referenced by:  lsslmod  13876  lsslss  13877
  Copyright terms: Public domain W3C validator