| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6896. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 |
|
| Ref | Expression |
|---|---|
| ensymd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 |
. 2
| |
| 2 | ensym 6896 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-er 6643 df-en 6851 |
| This theorem is referenced by: f1imaeng 6907 f1imaen2g 6908 en2sn 6929 xpdom3m 6954 phplem4 6977 phplem4dom 6984 php5dom 6985 phpm 6988 phplem4on 6990 dif1en 7002 dif1enen 7003 fisbth 7006 fin0 7008 fin0or 7009 fientri3 7038 unsnfidcex 7043 unsnfidcel 7044 fiintim 7054 fisseneq 7057 f1ofi 7071 endjusym 7224 eninl 7225 eninr 7226 pm54.43 7324 djuen 7354 dju1en 7356 djuassen 7360 xpdjuen 7361 uzenom 10607 hashennnuni 10961 hashennn 10962 hashcl 10963 hashfz1 10965 hashen 10966 fihashfn 10982 fihashdom 10985 hashunlem 10986 zfz1iso 11023 summodclem2 11808 zsumdc 11810 prodmodclem2 12003 zproddc 12005 4sqlem11 12839 ennnfonelemen 12907 exmidunben 12912 ctinfom 12914 ctinf 12916 isnzr2 14061 znfi 14532 znhash 14533 pwf1oexmid 16138 nnnninfen 16160 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |