![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version |
Description: Symmetry of equinumerosity. Deduction form of ensym 6835. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ensymd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ensym 6835 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-er 6587 df-en 6795 |
This theorem is referenced by: f1imaeng 6846 f1imaen2g 6847 en2sn 6867 xpdom3m 6888 phplem4 6911 phplem4dom 6918 php5dom 6919 phpm 6921 phplem4on 6923 dif1en 6935 dif1enen 6936 fisbth 6939 fin0 6941 fin0or 6942 fientri3 6971 unsnfidcex 6976 unsnfidcel 6977 fiintim 6985 fisseneq 6988 f1ofi 7002 endjusym 7155 eninl 7156 eninr 7157 pm54.43 7250 djuen 7271 dju1en 7273 djuassen 7277 xpdjuen 7278 uzenom 10496 hashennnuni 10850 hashennn 10851 hashcl 10852 hashfz1 10854 hashen 10855 fihashfn 10871 fihashdom 10874 hashunlem 10875 zfz1iso 10912 summodclem2 11525 zsumdc 11527 prodmodclem2 11720 zproddc 11722 4sqlem11 12539 ennnfonelemen 12578 exmidunben 12583 ctinfom 12585 ctinf 12587 isnzr2 13680 znfi 14143 znhash 14144 pwf1oexmid 15490 nnnninfen 15511 sbthom 15516 |
Copyright terms: Public domain | W3C validator |