![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version |
Description: Symmetry of equinumerosity. Deduction form of ensym 6627. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ensymd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ensym 6627 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-id 4173 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-er 6381 df-en 6587 |
This theorem is referenced by: f1imaeng 6638 f1imaen2g 6639 en2sn 6659 xpdom3m 6679 phplem4 6700 phplem4dom 6707 php5dom 6708 phpm 6710 phplem4on 6712 dif1en 6724 dif1enen 6725 fisbth 6728 fin0 6730 fin0or 6731 fientri3 6754 unsnfidcex 6759 unsnfidcel 6760 fiintim 6768 fisseneq 6771 f1ofi 6781 endjusym 6931 eninl 6932 eninr 6933 pm54.43 6993 djuen 7012 dju1en 7014 djuassen 7018 xpdjuen 7019 uzenom 10085 hashennnuni 10412 hashennn 10413 hashcl 10414 hashfz1 10416 hashen 10417 fihashfn 10433 fihashdom 10436 hashunlem 10437 zfz1iso 10471 summodclem2 11037 zsumdc 11039 ennnfonelemen 11773 exmidunben 11778 ctinfom 11780 ctinf 11782 pwf1oexmid 12877 sbthom 12902 |
Copyright terms: Public domain | W3C validator |