| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6931. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 |
|
| Ref | Expression |
|---|---|
| ensymd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 |
. 2
| |
| 2 | ensym 6931 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-er 6678 df-en 6886 |
| This theorem is referenced by: f1imaeng 6942 f1imaen2g 6943 en2sn 6964 xpdom3m 6989 phplem4 7012 phplem4dom 7019 php5dom 7020 phpm 7023 phplem4on 7025 dif1en 7037 dif1enen 7038 fisbth 7041 fin0 7043 fin0or 7044 fientri3 7073 unsnfidcex 7078 unsnfidcel 7079 fiintim 7089 fisseneq 7092 f1ofi 7106 endjusym 7259 eninl 7260 eninr 7261 pm54.43 7359 djuen 7389 dju1en 7391 djuassen 7395 xpdjuen 7396 uzenom 10642 hashennnuni 10996 hashennn 10997 hashcl 10998 hashfz1 11000 hashen 11001 fihashfn 11017 fihashdom 11020 hashunlem 11021 zfz1iso 11058 summodclem2 11888 zsumdc 11890 prodmodclem2 12083 zproddc 12085 4sqlem11 12919 ennnfonelemen 12987 exmidunben 12992 ctinfom 12994 ctinf 12996 isnzr2 14142 znfi 14613 znhash 14614 usgrsizedgen 16005 pwf1oexmid 16324 nnnninfen 16346 sbthom 16353 |
| Copyright terms: Public domain | W3C validator |