| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6873. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 |
|
| Ref | Expression |
|---|---|
| ensymd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 |
. 2
| |
| 2 | ensym 6873 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-er 6620 df-en 6828 |
| This theorem is referenced by: f1imaeng 6884 f1imaen2g 6885 en2sn 6905 xpdom3m 6929 phplem4 6952 phplem4dom 6959 php5dom 6960 phpm 6962 phplem4on 6964 dif1en 6976 dif1enen 6977 fisbth 6980 fin0 6982 fin0or 6983 fientri3 7012 unsnfidcex 7017 unsnfidcel 7018 fiintim 7028 fisseneq 7031 f1ofi 7045 endjusym 7198 eninl 7199 eninr 7200 pm54.43 7298 djuen 7323 dju1en 7325 djuassen 7329 xpdjuen 7330 uzenom 10570 hashennnuni 10924 hashennn 10925 hashcl 10926 hashfz1 10928 hashen 10929 fihashfn 10945 fihashdom 10948 hashunlem 10949 zfz1iso 10986 summodclem2 11693 zsumdc 11695 prodmodclem2 11888 zproddc 11890 4sqlem11 12724 ennnfonelemen 12792 exmidunben 12797 ctinfom 12799 ctinf 12801 isnzr2 13946 znfi 14417 znhash 14418 pwf1oexmid 15936 nnnninfen 15958 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |