| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | Unicode version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6872. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 |
|
| Ref | Expression |
|---|---|
| ensymd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 |
. 2
| |
| 2 | ensym 6872 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-er 6619 df-en 6827 |
| This theorem is referenced by: f1imaeng 6883 f1imaen2g 6884 en2sn 6904 xpdom3m 6928 phplem4 6951 phplem4dom 6958 php5dom 6959 phpm 6961 phplem4on 6963 dif1en 6975 dif1enen 6976 fisbth 6979 fin0 6981 fin0or 6982 fientri3 7011 unsnfidcex 7016 unsnfidcel 7017 fiintim 7027 fisseneq 7030 f1ofi 7044 endjusym 7197 eninl 7198 eninr 7199 pm54.43 7297 djuen 7322 dju1en 7324 djuassen 7328 xpdjuen 7329 uzenom 10568 hashennnuni 10922 hashennn 10923 hashcl 10924 hashfz1 10926 hashen 10927 fihashfn 10943 fihashdom 10946 hashunlem 10947 zfz1iso 10984 summodclem2 11664 zsumdc 11666 prodmodclem2 11859 zproddc 11861 4sqlem11 12695 ennnfonelemen 12763 exmidunben 12768 ctinfom 12770 ctinf 12772 isnzr2 13917 znfi 14388 znhash 14389 pwf1oexmid 15898 nnnninfen 15920 sbthom 15927 |
| Copyright terms: Public domain | W3C validator |