ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preimaf1ofi Unicode version

Theorem preimaf1ofi 7114
Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
preimaf1ofi.ss  |-  ( ph  ->  C  C_  B )
preimaf1ofi.f  |-  ( ph  ->  F : A -1-1-onto-> B )
preimaf1ofi.c  |-  ( ph  ->  C  e.  Fin )
Assertion
Ref Expression
preimaf1ofi  |-  ( ph  ->  ( `' F " C )  e.  Fin )

Proof of Theorem preimaf1ofi
StepHypRef Expression
1 preimaf1ofi.c . 2  |-  ( ph  ->  C  e.  Fin )
2 preimaf1ofi.f . . . 4  |-  ( ph  ->  F : A -1-1-onto-> B )
3 f1ocnv 5584 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
4 f1of1 5570 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B -1-1-> A
)
52, 3, 43syl 17 . . 3  |-  ( ph  ->  `' F : B -1-1-> A
)
6 preimaf1ofi.ss . . 3  |-  ( ph  ->  C  C_  B )
7 f1ores 5586 . . 3  |-  ( ( `' F : B -1-1-> A  /\  C  C_  B )  ->  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )
85, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )
9 f1ofi 7106 . 2  |-  ( ( C  e.  Fin  /\  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )  -> 
( `' F " C )  e.  Fin )
101, 8, 9syl2anc 411 1  |-  ( ph  ->  ( `' F " C )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   `'ccnv 4717    |` cres 4720   "cima 4721   -1-1->wf1 5314   -1-1-onto->wf1o 5316   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  fisumss  11898  fprodssdc  12096
  Copyright terms: Public domain W3C validator