ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preimaf1ofi Unicode version

Theorem preimaf1ofi 7053
Description: The preimage of a finite set under a one-to-one, onto function is finite. (Contributed by Jim Kingdon, 24-Sep-2022.)
Hypotheses
Ref Expression
preimaf1ofi.ss  |-  ( ph  ->  C  C_  B )
preimaf1ofi.f  |-  ( ph  ->  F : A -1-1-onto-> B )
preimaf1ofi.c  |-  ( ph  ->  C  e.  Fin )
Assertion
Ref Expression
preimaf1ofi  |-  ( ph  ->  ( `' F " C )  e.  Fin )

Proof of Theorem preimaf1ofi
StepHypRef Expression
1 preimaf1ofi.c . 2  |-  ( ph  ->  C  e.  Fin )
2 preimaf1ofi.f . . . 4  |-  ( ph  ->  F : A -1-1-onto-> B )
3 f1ocnv 5535 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
4 f1of1 5521 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B -1-1-> A
)
52, 3, 43syl 17 . . 3  |-  ( ph  ->  `' F : B -1-1-> A
)
6 preimaf1ofi.ss . . 3  |-  ( ph  ->  C  C_  B )
7 f1ores 5537 . . 3  |-  ( ( `' F : B -1-1-> A  /\  C  C_  B )  ->  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )
85, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )
9 f1ofi 7045 . 2  |-  ( ( C  e.  Fin  /\  ( `' F  |`  C ) : C -1-1-onto-> ( `' F " C ) )  -> 
( `' F " C )  e.  Fin )
101, 8, 9syl2anc 411 1  |-  ( ph  ->  ( `' F " C )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    C_ wss 3166   `'ccnv 4674    |` cres 4677   "cima 4678   -1-1->wf1 5268   -1-1-onto->wf1o 5270   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  fisumss  11703  fprodssdc  11901
  Copyright terms: Public domain W3C validator