ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrf Unicode version

Theorem algrf 12367
Description: An algorithm is a step function  F : S --> S on a state space  S. An algorithm acts on an initial state  A  e.  S by iteratively applying  F to give  A,  ( F `  A ),  ( F `  ( F `  A )
) and so on. An algorithm is said to halt if a fixed point of  F is reached after a finite number of iterations.

The algorithm iterator  R : NN0 --> S "runs" the algorithm  F so that  ( R `  k ) is the state after  k iterations of  F on the initial state  A.

Domain and codomain of the algorithm iterator  R. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
algrf  |-  ( ph  ->  R : Z --> S )

Proof of Theorem algrf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 algrf.3 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 algrf.4 . . . . 5  |-  ( ph  ->  A  e.  S )
4 fvconst2g 5798 . . . . 5  |-  ( ( A  e.  S  /\  x  e.  Z )  ->  ( ( Z  X.  { A } ) `  x )  =  A )
53, 4sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  (
( Z  X.  { A } ) `  x
)  =  A )
63adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  S )
75, 6eqeltrd 2282 . . 3  |-  ( (
ph  /\  x  e.  Z )  ->  (
( Z  X.  { A } ) `  x
)  e.  S )
8 vex 2775 . . . . 5  |-  x  e. 
_V
9 vex 2775 . . . . 5  |-  y  e. 
_V
108, 9algrflem 6315 . . . 4  |-  ( x ( F  o.  1st ) y )  =  ( F `  x
)
11 algrf.5 . . . . 5  |-  ( ph  ->  F : S --> S )
12 simpl 109 . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  x  e.  S )
13 ffvelcdm 5713 . . . . 5  |-  ( ( F : S --> S  /\  x  e.  S )  ->  ( F `  x
)  e.  S )
1411, 12, 13syl2an 289 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
1510, 14eqeltrid 2292 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
161, 2, 7, 15seqf 10609 . 2  |-  ( ph  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) : Z --> S )
17 algrf.2 . . 3  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
1817feq1i 5418 . 2  |-  ( R : Z --> S  <->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) : Z --> S )
1916, 18sylibr 134 1  |-  ( ph  ->  R : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {csn 3633    X. cxp 4673    o. ccom 4679   -->wf 5267   ` cfv 5271  (class class class)co 5944   1stc1st 6224   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  algrp1  12368  alginv  12369  algcvg  12370  algcvga  12373  algfx  12374  eucalgcvga  12380  eucalg  12381
  Copyright terms: Public domain W3C validator