ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrf Unicode version

Theorem algrf 12039
Description: An algorithm is a step function  F : S --> S on a state space  S. An algorithm acts on an initial state  A  e.  S by iteratively applying  F to give  A,  ( F `  A ),  ( F `  ( F `  A )
) and so on. An algorithm is said to halt if a fixed point of  F is reached after a finite number of iterations.

The algorithm iterator  R : NN0 --> S "runs" the algorithm  F so that  ( R `  k ) is the state after  k iterations of  F on the initial state  A.

Domain and codomain of the algorithm iterator  R. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
algrf  |-  ( ph  ->  R : Z --> S )

Proof of Theorem algrf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 algrf.3 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 algrf.4 . . . . 5  |-  ( ph  ->  A  e.  S )
4 fvconst2g 5730 . . . . 5  |-  ( ( A  e.  S  /\  x  e.  Z )  ->  ( ( Z  X.  { A } ) `  x )  =  A )
53, 4sylan 283 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  (
( Z  X.  { A } ) `  x
)  =  A )
63adantr 276 . . . 4  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  S )
75, 6eqeltrd 2254 . . 3  |-  ( (
ph  /\  x  e.  Z )  ->  (
( Z  X.  { A } ) `  x
)  e.  S )
8 vex 2740 . . . . 5  |-  x  e. 
_V
9 vex 2740 . . . . 5  |-  y  e. 
_V
108, 9algrflem 6229 . . . 4  |-  ( x ( F  o.  1st ) y )  =  ( F `  x
)
11 algrf.5 . . . . 5  |-  ( ph  ->  F : S --> S )
12 simpl 109 . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  x  e.  S )
13 ffvelcdm 5649 . . . . 5  |-  ( ( F : S --> S  /\  x  e.  S )  ->  ( F `  x
)  e.  S )
1411, 12, 13syl2an 289 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
1510, 14eqeltrid 2264 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
161, 2, 7, 15seqf 10458 . 2  |-  ( ph  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) : Z --> S )
17 algrf.2 . . 3  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
1817feq1i 5358 . 2  |-  ( R : Z --> S  <->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) : Z --> S )
1916, 18sylibr 134 1  |-  ( ph  ->  R : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {csn 3592    X. cxp 4624    o. ccom 4630   -->wf 5212   ` cfv 5216  (class class class)co 5874   1stc1st 6138   ZZcz 9251   ZZ>=cuz 9526    seqcseq 10442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-n0 9175  df-z 9252  df-uz 9527  df-seqfrec 10443
This theorem is referenced by:  algrp1  12040  alginv  12041  algcvg  12042  algcvga  12045  algfx  12046  eucalgcvga  12052  eucalg  12053
  Copyright terms: Public domain W3C validator