ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf Unicode version

Theorem nninfdclemf 12452
Description: Lemma for nninfdc 12456. A function from the natural numbers into  A. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf  |-  ( ph  ->  F : NN --> A )
Distinct variable groups:    A, m, n   
x, A    y, A, z    i, J
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( x, y, z, i, m, n)    J( x, y, z, m, n)

Proof of Theorem nninfdclemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9565 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9282 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 eqid 2177 . . . . 5  |-  ( i  e.  NN  |->  J )  =  ( i  e.  NN  |->  J )
4 eqidd 2178 . . . . 5  |-  ( i  =  p  ->  J  =  J )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  p  e.  NN )
6 nninfdclemf.j . . . . . . 7  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
76simpld 112 . . . . . 6  |-  ( ph  ->  J  e.  A )
87adantr 276 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  J  e.  A )
93, 4, 5, 8fvmptd3 5611 . . . 4  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  =  J )
109, 8eqeltrd 2254 . . 3  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  e.  A )
11 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
1211adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A  C_  NN )
13 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. x  e.  NN DECID  x  e.  A )
15 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
1615adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
17 simprl 529 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  p  e.  A )
18 simprr 531 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
q  e.  A )
1912, 14, 16, 17, 18nninfdclemcl 12451 . . 3  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( p ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) q )  e.  A )
201, 2, 10, 19seqf 10463 . 2  |-  ( ph  ->  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
21 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
2221feq1i 5360 . 2  |-  ( F : NN --> A  <->  seq 1
( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
2320, 22sylibr 134 1  |-  ( ph  ->  F : NN --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    i^i cin 3130    C_ wss 3131   class class class wbr 4005    |-> cmpt 4066   -->wf 5214   ` cfv 5218  (class class class)co 5877    e. cmpo 5879  infcinf 6984   RRcr 7812   1c1 7814    + caddc 7816    < clt 7994   NNcn 8921   ZZ>=cuz 9530    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145  df-seqfrec 10448
This theorem is referenced by:  nninfdclemp1  12453  nninfdclemlt  12454  nninfdclemf1  12455
  Copyright terms: Public domain W3C validator