ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf Unicode version

Theorem nninfdclemf 12666
Description: Lemma for nninfdc 12670. A function from the natural numbers into  A. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf  |-  ( ph  ->  F : NN --> A )
Distinct variable groups:    A, m, n   
x, A    y, A, z    i, J
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( x, y, z, i, m, n)    J( x, y, z, m, n)

Proof of Theorem nninfdclemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9637 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9353 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 eqid 2196 . . . . 5  |-  ( i  e.  NN  |->  J )  =  ( i  e.  NN  |->  J )
4 eqidd 2197 . . . . 5  |-  ( i  =  p  ->  J  =  J )
5 simpr 110 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  p  e.  NN )
6 nninfdclemf.j . . . . . . 7  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
76simpld 112 . . . . . 6  |-  ( ph  ->  J  e.  A )
87adantr 276 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  J  e.  A )
93, 4, 5, 8fvmptd3 5655 . . . 4  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  =  J )
109, 8eqeltrd 2273 . . 3  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  e.  A )
11 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
1211adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A  C_  NN )
13 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1413adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. x  e.  NN DECID  x  e.  A )
15 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
1615adantr 276 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
17 simprl 529 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  p  e.  A )
18 simprr 531 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
q  e.  A )
1912, 14, 16, 17, 18nninfdclemcl 12665 . . 3  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( p ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) q )  e.  A )
201, 2, 10, 19seqf 10556 . 2  |-  ( ph  ->  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
21 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
2221feq1i 5400 . 2  |-  ( F : NN --> A  <->  seq 1
( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
2320, 22sylibr 134 1  |-  ( ph  ->  F : NN --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924  infcinf 7049   RRcr 7878   1c1 7880    + caddc 7882    < clt 8061   NNcn 8990   ZZ>=cuz 9601    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  nninfdclemp1  12667  nninfdclemlt  12668  nninfdclemf1  12669
  Copyright terms: Public domain W3C validator