ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemf Unicode version

Theorem nninfdclemf 12276
Description: Lemma for nninfdc 12280. A function from the natural numbers into  A. (Contributed by Jim Kingdon, 23-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
Assertion
Ref Expression
nninfdclemf  |-  ( ph  ->  F : NN --> A )
Distinct variable groups:    A, m, n   
x, A    y, A, z    i, J
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( x, y, z, i, m, n)    J( x, y, z, m, n)

Proof of Theorem nninfdclemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9480 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9200 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 eqid 2157 . . . . 5  |-  ( i  e.  NN  |->  J )  =  ( i  e.  NN  |->  J )
4 eqidd 2158 . . . . 5  |-  ( i  =  p  ->  J  =  J )
5 simpr 109 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  p  e.  NN )
6 nninfdclemf.j . . . . . . 7  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
76simpld 111 . . . . . 6  |-  ( ph  ->  J  e.  A )
87adantr 274 . . . . 5  |-  ( (
ph  /\  p  e.  NN )  ->  J  e.  A )
93, 4, 5, 8fvmptd3 5564 . . . 4  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  =  J )
109, 8eqeltrd 2234 . . 3  |-  ( (
ph  /\  p  e.  NN )  ->  ( ( i  e.  NN  |->  J ) `  p )  e.  A )
11 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
1211adantr 274 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A  C_  NN )
13 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
1413adantr 274 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. x  e.  NN DECID  x  e.  A )
15 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
1615adantr 274 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
17 simprl 521 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  p  e.  A )
18 simprr 522 . . . 4  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
q  e.  A )
1912, 14, 16, 17, 18nninfdclemcl 12275 . . 3  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( p ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) q )  e.  A )
201, 2, 10, 19seqf 10370 . 2  |-  ( ph  ->  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
21 nninfdclemf.f . . 3  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
2221feq1i 5315 . 2  |-  ( F : NN --> A  <->  seq 1
( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) : NN --> A )
2320, 22sylibr 133 1  |-  ( ph  ->  F : NN --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436    i^i cin 3101    C_ wss 3102   class class class wbr 3967    |-> cmpt 4028   -->wf 5169   ` cfv 5173  (class class class)co 5827    e. cmpo 5829  infcinf 6930   RRcr 7734   1c1 7736    + caddc 7738    < clt 7915   NNcn 8839   ZZ>=cuz 9445    seqcseq 10354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052  df-seqfrec 10355
This theorem is referenced by:  nninfdclemp1  12277  nninfdclemlt  12278  nninfdclemf1  12279
  Copyright terms: Public domain W3C validator