![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > finnum | GIF version |
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
finnum | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6585 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
2 | nnon 4461 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
3 | ensym 6605 | . . . 4 ⊢ (𝐴 ≈ 𝑥 → 𝑥 ≈ 𝐴) | |
4 | isnumi 6949 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ≈ 𝐴) → 𝐴 ∈ dom card) | |
5 | 2, 3, 4 | syl2an 285 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) → 𝐴 ∈ dom card) |
6 | 5 | rexlimiva 2503 | . 2 ⊢ (∃𝑥 ∈ ω 𝐴 ≈ 𝑥 → 𝐴 ∈ dom card) |
7 | 1, 6 | sylbi 120 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 ∃wrex 2376 class class class wbr 3875 Oncon0 4223 ωcom 4442 dom cdm 4477 ≈ cen 6562 Fincfn 6564 cardccrd 6946 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-er 6359 df-en 6565 df-fin 6567 df-card 6947 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |