ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finnum GIF version

Theorem finnum 7272
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
finnum (𝐴 ∈ Fin → 𝐴 ∈ dom card)

Proof of Theorem finnum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 6838 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 nnon 4656 . . . 4 (𝑥 ∈ ω → 𝑥 ∈ On)
3 ensym 6858 . . . 4 (𝐴𝑥𝑥𝐴)
4 isnumi 7271 . . . 4 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
52, 3, 4syl2an 289 . . 3 ((𝑥 ∈ ω ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
65rexlimiva 2617 . 2 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ dom card)
71, 6sylbi 121 1 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  wrex 2484   class class class wbr 4043  Oncon0 4408  ωcom 4636  dom cdm 4673  cen 6815  Fincfn 6817  cardccrd 7266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-er 6610  df-en 6818  df-fin 6820  df-card 7268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator