ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finnum GIF version

Theorem finnum 7184
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
finnum (𝐴 ∈ Fin → 𝐴 ∈ dom card)

Proof of Theorem finnum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 6763 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 nnon 4611 . . . 4 (𝑥 ∈ ω → 𝑥 ∈ On)
3 ensym 6783 . . . 4 (𝐴𝑥𝑥𝐴)
4 isnumi 7183 . . . 4 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝐴 ∈ dom card)
52, 3, 4syl2an 289 . . 3 ((𝑥 ∈ ω ∧ 𝐴𝑥) → 𝐴 ∈ dom card)
65rexlimiva 2589 . 2 (∃𝑥 ∈ ω 𝐴𝑥𝐴 ∈ dom card)
71, 6sylbi 121 1 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wrex 2456   class class class wbr 4005  Oncon0 4365  ωcom 4591  dom cdm 4628  cen 6740  Fincfn 6742  cardccrd 7180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-er 6537  df-en 6743  df-fin 6745  df-card 7181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator