ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfvelrn GIF version

Theorem fnfvelrn 5690
Description: A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
Assertion
Ref Expression
fnfvelrn ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)

Proof of Theorem fnfvelrn
StepHypRef Expression
1 fvelrn 5689 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ ran 𝐹)
21funfni 5354 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) ∈ ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  ran crn 4660   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  ffvelcdm  5691  fnovrn  6066  fo1stresm  6214  fo2ndresm  6215  fo2ndf  6280  phplem4  6911  phplem4on  6923  cc2lem  7326  frec2uzrand  10476  frecuzrdglem  10482  frecuzrdg0  10484  frecuzrdg0t  10493  uzin2  11131  ghmrn  13327  conjnmz  13349
  Copyright terms: Public domain W3C validator