ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0t Unicode version

Theorem frecuzrdg0t 10378
Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdg0t.ran  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdg0t  |-  ( ph  ->  ( P `  C
)  =  A )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdg0t
StepHypRef Expression
1 frecuzrdgrclt.c . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . 4  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . 4  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdg0t.ran . . . 4  |-  ( ph  ->  P  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10377 . . 3  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
8 ffun 5350 . . 3  |-  ( P : ( ZZ>= `  C
) --> S  ->  Fun  P )
97, 8syl 14 . 2  |-  ( ph  ->  Fun  P )
105fveq1i 5497 . . . . 5  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
11 opexg 4213 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
121, 2, 11syl2anc 409 . . . . . 6  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
13 frec0g 6376 . . . . . 6  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1510, 14eqtrid 2215 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
161, 2, 3, 4, 5frecuzrdgrclt 10371 . . . . . 6  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
17 ffn 5347 . . . . . 6  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  R  Fn  om )
19 peano1 4578 . . . . 5  |-  (/)  e.  om
20 fnfvelrn 5628 . . . . 5  |-  ( ( R  Fn  om  /\  (/) 
e.  om )  ->  ( R `  (/) )  e. 
ran  R )
2118, 19, 20sylancl 411 . . . 4  |-  ( ph  ->  ( R `  (/) )  e. 
ran  R )
2215, 21eqeltrrd 2248 . . 3  |-  ( ph  -> 
<. C ,  A >.  e. 
ran  R )
2322, 6eleqtrrd 2250 . 2  |-  ( ph  -> 
<. C ,  A >.  e.  P )
24 funopfv 5536 . 2  |-  ( Fun 
P  ->  ( <. C ,  A >.  e.  P  ->  ( P `  C
)  =  A ) )
259, 23, 24sylc 62 1  |-  ( ph  ->  ( P `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   (/)c0 3414   <.cop 3586   omcom 4574    X. cxp 4609   ran crn 4612   Fun wfun 5192    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369   1c1 7775    + caddc 7777   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  seq3-1  10416  seq1cd  10421
  Copyright terms: Public domain W3C validator