ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0t Unicode version

Theorem frecuzrdg0t 10493
Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdg0t.ran  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdg0t  |-  ( ph  ->  ( P `  C
)  =  A )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdg0t
StepHypRef Expression
1 frecuzrdgrclt.c . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . 4  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . 4  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdg0t.ran . . . 4  |-  ( ph  ->  P  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10492 . . 3  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
8 ffun 5406 . . 3  |-  ( P : ( ZZ>= `  C
) --> S  ->  Fun  P )
97, 8syl 14 . 2  |-  ( ph  ->  Fun  P )
105fveq1i 5555 . . . . 5  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
11 opexg 4257 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
121, 2, 11syl2anc 411 . . . . . 6  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
13 frec0g 6450 . . . . . 6  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1510, 14eqtrid 2238 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
161, 2, 3, 4, 5frecuzrdgrclt 10486 . . . . . 6  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
17 ffn 5403 . . . . . 6  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  R  Fn  om )
19 peano1 4626 . . . . 5  |-  (/)  e.  om
20 fnfvelrn 5690 . . . . 5  |-  ( ( R  Fn  om  /\  (/) 
e.  om )  ->  ( R `  (/) )  e. 
ran  R )
2118, 19, 20sylancl 413 . . . 4  |-  ( ph  ->  ( R `  (/) )  e. 
ran  R )
2215, 21eqeltrrd 2271 . . 3  |-  ( ph  -> 
<. C ,  A >.  e. 
ran  R )
2322, 6eleqtrrd 2273 . 2  |-  ( ph  -> 
<. C ,  A >.  e.  P )
24 funopfv 5596 . 2  |-  ( Fun 
P  ->  ( <. C ,  A >.  e.  P  ->  ( P `  C
)  =  A ) )
259, 23, 24sylc 62 1  |-  ( ph  ->  ( P `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   (/)c0 3446   <.cop 3621   omcom 4622    X. cxp 4657   ran crn 4660   Fun wfun 5248    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  freccfrec 6443   1c1 7873    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  seq3-1  10533  seq1cd  10540
  Copyright terms: Public domain W3C validator