| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdg0t | Unicode version | ||
| Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c |
|
| frecuzrdgrclt.a |
|
| frecuzrdgrclt.t |
|
| frecuzrdgrclt.f |
|
| frecuzrdgrclt.r |
|
| frecuzrdg0t.ran |
|
| Ref | Expression |
|---|---|
| frecuzrdg0t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c |
. . . 4
| |
| 2 | frecuzrdgrclt.a |
. . . 4
| |
| 3 | frecuzrdgrclt.t |
. . . 4
| |
| 4 | frecuzrdgrclt.f |
. . . 4
| |
| 5 | frecuzrdgrclt.r |
. . . 4
| |
| 6 | frecuzrdg0t.ran |
. . . 4
| |
| 7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtclt 10513 |
. . 3
|
| 8 | ffun 5410 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | 5 | fveq1i 5559 |
. . . . 5
|
| 11 | opexg 4261 |
. . . . . . 7
| |
| 12 | 1, 2, 11 | syl2anc 411 |
. . . . . 6
|
| 13 | frec0g 6455 |
. . . . . 6
| |
| 14 | 12, 13 | syl 14 |
. . . . 5
|
| 15 | 10, 14 | eqtrid 2241 |
. . . 4
|
| 16 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10507 |
. . . . . 6
|
| 17 | ffn 5407 |
. . . . . 6
| |
| 18 | 16, 17 | syl 14 |
. . . . 5
|
| 19 | peano1 4630 |
. . . . 5
| |
| 20 | fnfvelrn 5694 |
. . . . 5
| |
| 21 | 18, 19, 20 | sylancl 413 |
. . . 4
|
| 22 | 15, 21 | eqeltrrd 2274 |
. . 3
|
| 23 | 22, 6 | eleqtrrd 2276 |
. 2
|
| 24 | funopfv 5600 |
. 2
| |
| 25 | 9, 23, 24 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 |
| This theorem is referenced by: seq3-1 10554 seq1cd 10561 |
| Copyright terms: Public domain | W3C validator |