ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem Unicode version

Theorem frecuzrdglem 10337
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdglem.b  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
Assertion
Ref Expression
frecuzrdglem  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    G( x)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2frec2uzf1od 10332 . . . . 5  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
7 frecuzrdglem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
8 f1ocnvdm 5744 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
96, 7, 8syl2anc 409 . . . 4  |-  ( ph  ->  ( `' G `  B )  e.  om )
101, 2, 3, 4, 5, 9frec2uzrdg 10335 . . 3  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
11 f1ocnvfv2 5741 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
126, 7, 11syl2anc 409 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  B ) )  =  B )
1312opeq1d 3759 . . 3  |-  ( ph  -> 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  =  <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
1410, 13eqtrd 2197 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
151, 2, 3, 4, 5frecuzrdgrcl 10336 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 ffn 5332 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1715, 16syl 14 . . 3  |-  ( ph  ->  R  Fn  om )
18 fnfvelrn 5612 . . 3  |-  ( ( R  Fn  om  /\  ( `' G `  B )  e.  om )  -> 
( R `  ( `' G `  B ) )  e.  ran  R
)
1917, 9, 18syl2anc 409 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  e.  ran  R
)
2014, 19eqeltrrd 2242 1  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   <.cop 3574    |-> cmpt 4038   omcom 4562    X. cxp 4597   `'ccnv 4598   ran crn 4600    Fn wfn 5178   -->wf 5179   -1-1-onto->wf1o 5182   ` cfv 5183  (class class class)co 5837    e. cmpo 5839   2ndc2nd 6100  freccfrec 6350   1c1 7746    + caddc 7748   ZZcz 9183   ZZ>=cuz 9458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-frec 6351  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459
This theorem is referenced by:  frecuzrdgtcl  10338  frecuzrdgsuc  10340
  Copyright terms: Public domain W3C validator