ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem Unicode version

Theorem frecuzrdglem 10558
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdglem.b  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
Assertion
Ref Expression
frecuzrdglem  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    G( x)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2frec2uzf1od 10553 . . . . 5  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
7 frecuzrdglem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
8 f1ocnvdm 5852 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
96, 7, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( `' G `  B )  e.  om )
101, 2, 3, 4, 5, 9frec2uzrdg 10556 . . 3  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
11 f1ocnvfv2 5849 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
126, 7, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  B ) )  =  B )
1312opeq1d 3825 . . 3  |-  ( ph  -> 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  =  <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
1410, 13eqtrd 2238 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
151, 2, 3, 4, 5frecuzrdgrcl 10557 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 ffn 5427 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1715, 16syl 14 . . 3  |-  ( ph  ->  R  Fn  om )
18 fnfvelrn 5714 . . 3  |-  ( ( R  Fn  om  /\  ( `' G `  B )  e.  om )  -> 
( R `  ( `' G `  B ) )  e.  ran  R
)
1917, 9, 18syl2anc 411 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  e.  ran  R
)
2014, 19eqeltrrd 2283 1  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   <.cop 3636    |-> cmpt 4106   omcom 4639    X. cxp 4674   `'ccnv 4675   ran crn 4677    Fn wfn 5267   -->wf 5268   -1-1-onto->wf1o 5271   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   2ndc2nd 6227  freccfrec 6478   1c1 7928    + caddc 7930   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651
This theorem is referenced by:  frecuzrdgtcl  10559  frecuzrdgsuc  10561
  Copyright terms: Public domain W3C validator