ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem Unicode version

Theorem frecuzrdglem 10411
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdglem.b  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
Assertion
Ref Expression
frecuzrdglem  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    G( x)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2frec2uzf1od 10406 . . . . 5  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
7 frecuzrdglem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
8 f1ocnvdm 5782 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
96, 7, 8syl2anc 411 . . . 4  |-  ( ph  ->  ( `' G `  B )  e.  om )
101, 2, 3, 4, 5, 9frec2uzrdg 10409 . . 3  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
11 f1ocnvfv2 5779 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
126, 7, 11syl2anc 411 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  B ) )  =  B )
1312opeq1d 3785 . . 3  |-  ( ph  -> 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  =  <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
1410, 13eqtrd 2210 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
151, 2, 3, 4, 5frecuzrdgrcl 10410 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 ffn 5366 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1715, 16syl 14 . . 3  |-  ( ph  ->  R  Fn  om )
18 fnfvelrn 5649 . . 3  |-  ( ( R  Fn  om  /\  ( `' G `  B )  e.  om )  -> 
( R `  ( `' G `  B ) )  e.  ran  R
)
1917, 9, 18syl2anc 411 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  e.  ran  R
)
2014, 19eqeltrrd 2255 1  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   <.cop 3596    |-> cmpt 4065   omcom 4590    X. cxp 4625   `'ccnv 4626   ran crn 4628    Fn wfn 5212   -->wf 5213   -1-1-onto->wf1o 5216   ` cfv 5217  (class class class)co 5875    e. cmpo 5877   2ndc2nd 6140  freccfrec 6391   1c1 7812    + caddc 7814   ZZcz 9253   ZZ>=cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  frecuzrdgtcl  10412  frecuzrdgsuc  10414
  Copyright terms: Public domain W3C validator