Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecuzrdg0 | Unicode version |
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10276 for the description of as the mapping from to . (Contributed by Jim Kingdon, 27-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | |
frec2uz.2 | frec |
frecuzrdgrrn.a | |
frecuzrdgrrn.f | |
frecuzrdgrrn.2 | frec |
frecuzrdgtcl.3 |
Ref | Expression |
---|---|
frecuzrdg0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.1 | . . . 4 | |
2 | frec2uz.2 | . . . 4 frec | |
3 | frecuzrdgrrn.a | . . . 4 | |
4 | frecuzrdgrrn.f | . . . 4 | |
5 | frecuzrdgrrn.2 | . . . 4 frec | |
6 | frecuzrdgtcl.3 | . . . 4 | |
7 | 1, 2, 3, 4, 5, 6 | frecuzrdgtcl 10289 | . . 3 |
8 | ffun 5315 | . . 3 | |
9 | 7, 8 | syl 14 | . 2 |
10 | 5 | fveq1i 5462 | . . . . 5 frec |
11 | opexg 4183 | . . . . . . 7 | |
12 | 1, 3, 11 | syl2anc 409 | . . . . . 6 |
13 | frec0g 6334 | . . . . . 6 frec | |
14 | 12, 13 | syl 14 | . . . . 5 frec |
15 | 10, 14 | syl5eq 2199 | . . . 4 |
16 | 1, 2, 3, 4, 5 | frecuzrdgrcl 10287 | . . . . . 6 |
17 | ffn 5312 | . . . . . 6 | |
18 | 16, 17 | syl 14 | . . . . 5 |
19 | peano1 4547 | . . . . 5 | |
20 | fnfvelrn 5592 | . . . . 5 | |
21 | 18, 19, 20 | sylancl 410 | . . . 4 |
22 | 15, 21 | eqeltrrd 2232 | . . 3 |
23 | 22, 6 | eleqtrrd 2234 | . 2 |
24 | funopfv 5501 | . 2 | |
25 | 9, 23, 24 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cvv 2709 c0 3390 cop 3559 cmpt 4021 com 4543 cxp 4577 crn 4580 wfun 5157 wfn 5158 wf 5159 cfv 5163 (class class class)co 5814 cmpo 5816 freccfrec 6327 c1 7712 caddc 7714 cz 9146 cuz 9418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |