ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0 Unicode version

Theorem frecuzrdg0 10072
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 10058 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtcl.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdg0  |-  ( ph  ->  ( T `  C
)  =  A )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)

Proof of Theorem frecuzrdg0
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdgtcl.3 . . . 4  |-  ( ph  ->  T  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtcl 10071 . . 3  |-  ( ph  ->  T : ( ZZ>= `  C ) --> S )
8 ffun 5231 . . 3  |-  ( T : ( ZZ>= `  C
) --> S  ->  Fun  T )
97, 8syl 14 . 2  |-  ( ph  ->  Fun  T )
105fveq1i 5374 . . . . 5  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
11 opexg 4108 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
121, 3, 11syl2anc 406 . . . . . 6  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
13 frec0g 6245 . . . . . 6  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1510, 14syl5eq 2157 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
161, 2, 3, 4, 5frecuzrdgrcl 10069 . . . . . 6  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
17 ffn 5228 . . . . . 6  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  R  Fn  om )
19 peano1 4466 . . . . 5  |-  (/)  e.  om
20 fnfvelrn 5504 . . . . 5  |-  ( ( R  Fn  om  /\  (/) 
e.  om )  ->  ( R `  (/) )  e. 
ran  R )
2118, 19, 20sylancl 407 . . . 4  |-  ( ph  ->  ( R `  (/) )  e. 
ran  R )
2215, 21eqeltrrd 2190 . . 3  |-  ( ph  -> 
<. C ,  A >.  e. 
ran  R )
2322, 6eleqtrrd 2192 . 2  |-  ( ph  -> 
<. C ,  A >.  e.  T )
24 funopfv 5413 . 2  |-  ( Fun 
T  ->  ( <. C ,  A >.  e.  T  ->  ( T `  C
)  =  A ) )
259, 23, 24sylc 62 1  |-  ( ph  ->  ( T `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   _Vcvv 2655   (/)c0 3327   <.cop 3494    |-> cmpt 3947   omcom 4462    X. cxp 4495   ran crn 4498   Fun wfun 5073    Fn wfn 5074   -->wf 5075   ` cfv 5079  (class class class)co 5726    e. cmpo 5728  freccfrec 6238   1c1 7541    + caddc 7543   ZZcz 8951   ZZ>=cuz 9221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-addcom 7638  ax-addass 7640  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-0id 7646  ax-rnegex 7647  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-ltadd 7654
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-recs 6153  df-frec 6239  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-inn 8624  df-n0 8875  df-z 8952  df-uz 9222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator