ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp3 Unicode version

Theorem iscnp3 14675
Description: The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
iscnp3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, P, y

Proof of Theorem iscnp3
StepHypRef Expression
1 iscnp 14671 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
2 ffun 5428 . . . . . . . . . 10  |-  ( F : X --> Y  ->  Fun  F )
32ad2antlr 489 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  Fun  F )
4 toponss 14498 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
54adantlr 477 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  x  C_  X )
6 fdm 5431 . . . . . . . . . . 11  |-  ( F : X --> Y  ->  dom  F  =  X )
76ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  dom  F  =  X )
85, 7sseqtrrd 3232 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  x  C_  dom  F )
9 funimass3 5696 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  C_ 
dom  F )  -> 
( ( F "
x )  C_  y  <->  x 
C_  ( `' F " y ) ) )
103, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  ( ( F "
x )  C_  y  <->  x 
C_  ( `' F " y ) ) )
1110anbi2d 464 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  ( ( P  e.  x  /\  ( F
" x )  C_  y )  <->  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
1211rexbidva 2503 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
1312imbi2d 230 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) )
1413ralbidv 2506 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) )
1514pm5.32da 452 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
16153ad2ant1 1021 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
171, 16bitrd 188 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   `'ccnv 4674   dom cdm 4675   "cima 4678   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5944  TopOnctopon 14482    CnP ccnp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-top 14470  df-topon 14483  df-cnp 14661
This theorem is referenced by:  cncnpi  14700  cnpdis  14714
  Copyright terms: Public domain W3C validator