ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscnp3 Unicode version

Theorem iscnp3 14439
Description: The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
iscnp3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, P, y

Proof of Theorem iscnp3
StepHypRef Expression
1 iscnp 14435 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
2 ffun 5410 . . . . . . . . . 10  |-  ( F : X --> Y  ->  Fun  F )
32ad2antlr 489 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  Fun  F )
4 toponss 14262 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
54adantlr 477 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  x  C_  X )
6 fdm 5413 . . . . . . . . . . 11  |-  ( F : X --> Y  ->  dom  F  =  X )
76ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  dom  F  =  X )
85, 7sseqtrrd 3222 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  x  C_  dom  F )
9 funimass3 5678 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  C_ 
dom  F )  -> 
( ( F "
x )  C_  y  <->  x 
C_  ( `' F " y ) ) )
103, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  ( ( F "
x )  C_  y  <->  x 
C_  ( `' F " y ) ) )
1110anbi2d 464 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  /\  x  e.  J )  ->  ( ( P  e.  x  /\  ( F
" x )  C_  y )  <->  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
1211rexbidva 2494 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
1312imbi2d 230 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) )
1413ralbidv 2497 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X --> Y )  -> 
( A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  <->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) )
1514pm5.32da 452 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
16153ad2ant1 1020 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
171, 16bitrd 188 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   `'ccnv 4662   dom cdm 4663   "cima 4666   Fun wfun 5252   -->wf 5254   ` cfv 5258  (class class class)co 5922  TopOnctopon 14246    CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cnp 14425
This theorem is referenced by:  cncnpi  14464  cnpdis  14478
  Copyright terms: Public domain W3C validator