ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuctlem Unicode version

Theorem frecuzrdgsuctlem 10453
Description: Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 10429 for the description of  G as the mapping from  om to  ( ZZ>= `  C ). (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgsuctlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgsuctlem.ran  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgsuctlem  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
 B ) ) )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, B, y    x, G, y   
x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgsuctlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdgsuctlem.ran . . . . . 6  |-  ( ph  ->  P  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10451 . . . . 5  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
87adantr 276 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  P :
( ZZ>= `  C ) --> S )
9 ffun 5387 . . . 4  |-  ( P : ( ZZ>= `  C
) --> S  ->  Fun  P )
108, 9syl 14 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  Fun  P )
11 1st2nd2 6199 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1211adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1312fveq2d 5538 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. ) )
14 df-ov 5898 . . . . . . . . . . . . 13  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
1513, 14eqtr4di 2240 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) ) )
16 xp1st 6189 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
1716adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
183ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  S  C_  T
)
19 xp2nd 6190 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
2019adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  S
)
2118, 20sseldd 3171 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  T
)
22 peano2uz 9612 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
2317, 22syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
24 oveq2 5903 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
2524eleq1d 2258 . . . . . . . . . . . . . . 15  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
26 oveq1 5902 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
2726eleq1d 2258 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
2827ralbidv 2490 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( 1st `  z
)  ->  ( A. y  e.  S  (
x F y )  e.  S  <->  A. y  e.  S  ( ( 1st `  z ) F y )  e.  S
) )
294ralrimivva 2572 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
3029ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
3128, 30, 17rspcdva 2861 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. y  e.  S  ( ( 1st `  z ) F y )  e.  S
)
3225, 31, 20rspcdva 2861 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)
33 opelxpi 4676 . . . . . . . . . . . . . 14  |-  ( ( ( ( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
3423, 32, 33syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
35 oveq1 5902 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
3635, 26opeq12d 3801 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
3724opeq2d 3800 . . . . . . . . . . . . . 14  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
38 eqid 2189 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
3936, 37, 38ovmpog 6030 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  T  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
4017, 21, 34, 39syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
4115, 40eqtrd 2222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
4241, 34eqeltrd 2266 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
4342ralrimiva 2563 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A. z  e.  ( ( ZZ>= `  C
)  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  ( ( ZZ>= `  C
)  X.  S ) )
44 uzid 9571 . . . . . . . . . . . 12  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
451, 44syl 14 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
46 opelxpi 4676 . . . . . . . . . . 11  |-  ( ( C  e.  ( ZZ>= `  C )  /\  A  e.  S )  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
4745, 2, 46syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
4847adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
49 frecuzrdgsuctlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
501, 49frec2uzf1od 10436 . . . . . . . . . 10  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
51 f1ocnvdm 5802 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
5250, 51sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  B )  e.  om )
53 frecsuc 6431 . . . . . . . . 9  |-  ( ( A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S )  /\  <. C ,  A >.  e.  ( ( ZZ>= `  C )  X.  S )  /\  ( `' G `  B )  e.  om )  -> 
(frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
5443, 48, 52, 53syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) ) ) )
555fveq1i 5535 . . . . . . . 8  |-  ( R `
 suc  ( `' G `  B )
)  =  (frec ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  ( `' G `  B ) )
565fveq1i 5535 . . . . . . . . 9  |-  ( R `
 ( `' G `  B ) )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  ( `' G `  B ) )
5756fveq2i 5537 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  ( `' G `  B ) ) )
5854, 55, 573eqtr4g 2247 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) ) )
591, 2, 3, 4, 5frecuzrdgrclt 10445 . . . . . . . . . . . 12  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
6059adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  R : om
--> ( ( ZZ>= `  C
)  X.  S ) )
6160, 52ffvelcdmd 5672 . . . . . . . . . 10  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
62 1st2nd2 6199 . . . . . . . . . 10  |-  ( ( R `  ( `' G `  B ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( R `  ( `' G `  B )
)  =  <. ( 1st `  ( R `  ( `' G `  B ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>. )
6361, 62syl 14 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  = 
<. ( 1st `  ( R `  ( `' G `  B )
) ) ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>. )
641adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
652adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
663adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  S  C_  T
)
674adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  B  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
6864, 65, 66, 67, 5, 52, 49frecuzrdgg 10446 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  B ) ) )  =  ( G `  ( `' G `  B ) ) )
69 f1ocnvfv2 5799 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
7050, 69sylan 283 . . . . . . . . . . 11  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  B ) )  =  B )
7168, 70eqtrd 2222 . . . . . . . . . 10  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  B ) ) )  =  B )
7271opeq1d 3799 . . . . . . . . 9  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( 1st `  ( R `  ( `' G `  B ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  B ) ) )
>.  =  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
7363, 72eqtrd 2222 . . . . . . . 8  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  = 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
7473fveq2d 5538 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
)
7558, 74eqtrd 2222 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
)
76 df-ov 5898 . . . . . 6  |-  ( B ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
7775, 76eqtr4di 2240 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  =  ( B ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
78 simpr 110 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  B  e.  ( ZZ>= `  C )
)
79 xp2nd 6190 . . . . . . . 8  |-  ( ( R `  ( `' G `  B ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
8061, 79syl 14 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  S
)
8166, 80sseldd 3171 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  T
)
82 peano2uz 9612 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
8382adantl 277 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
8467, 78, 80caovcld 6049 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) )  e.  S )
85 opelxp 4674 . . . . . . 7  |-  ( <.
( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S )  <-> 
( ( B  + 
1 )  e.  (
ZZ>= `  C )  /\  ( B F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e.  S ) )
8683, 84, 85sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `
 ( `' G `  B ) ) ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )
87 oveq1 5902 . . . . . . . 8  |-  ( x  =  B  ->  (
x  +  1 )  =  ( B  + 
1 ) )
88 oveq1 5902 . . . . . . . 8  |-  ( x  =  B  ->  (
x F y )  =  ( B F y ) )
8987, 88opeq12d 3801 . . . . . . 7  |-  ( x  =  B  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( B  +  1 ) ,  ( B F y ) >. )
90 oveq2 5903 . . . . . . . 8  |-  ( y  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  ( B F y )  =  ( B F ( 2nd `  ( R `
 ( `' G `  B ) ) ) ) )
9190opeq2d 3800 . . . . . . 7  |-  ( y  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  <. ( B  +  1 ) ,  ( B F y ) >.  =  <. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
9289, 91, 38ovmpog 6030 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  T  /\  <. ( B  + 
1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( B
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
9378, 81, 86, 92syl3anc 1249 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
9477, 93eqtrd 2222 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  = 
<. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
95 ffun 5387 . . . . . . 7  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  Fun  R )
9660, 95syl 14 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  Fun  R )
97 peano2 4612 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  suc  ( `' G `  B )  e.  om )
9852, 97syl 14 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  suc  ( `' G `  B )  e.  om )
99 fdm 5390 . . . . . . . 8  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  dom  R  =  om )
10060, 99syl 14 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  dom  R  =  om )
10198, 100eleqtrrd 2269 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  suc  ( `' G `  B )  e.  dom  R )
102 fvelrn 5667 . . . . . 6  |-  ( ( Fun  R  /\  suc  ( `' G `  B )  e.  dom  R )  ->  ( R `  suc  ( `' G `  B ) )  e. 
ran  R )
10396, 101, 102syl2anc 411 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  e. 
ran  R )
1046adantr 276 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  P  =  ran  R )
105103, 104eleqtrrd 2269 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  suc  ( `' G `  B ) )  e.  P )
10694, 105eqeltrrd 2267 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `
 ( `' G `  B ) ) ) ) >.  e.  P
)
107 funopfv 5575 . . 3  |-  ( Fun 
P  ->  ( <. ( B  +  1 ) ,  ( B F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  P  ->  ( P `
 ( B  + 
1 ) )  =  ( B F ( 2nd `  ( R `
 ( `' G `  B ) ) ) ) ) )
10810, 106, 107sylc 62 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  ( B  +  1 ) )  =  ( B F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
10952, 100eleqtrrd 2269 . . . . . . 7  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( `' G `  B )  e.  dom  R )
110 fvelrn 5667 . . . . . . 7  |-  ( ( Fun  R  /\  ( `' G `  B )  e.  dom  R )  ->  ( R `  ( `' G `  B ) )  e.  ran  R
)
11196, 109, 110syl2anc 411 . . . . . 6  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e. 
ran  R )
112111, 104eleqtrrd 2269 . . . . 5  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  B ) )  e.  P )
11373, 112eqeltrrd 2267 . . . 4  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  P
)
114 funopfv 5575 . . . 4  |-  ( Fun 
P  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  P  ->  ( P `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
11510, 113, 114sylc 62 . . 3  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  B )  =  ( 2nd `  ( R `
 ( `' G `  B ) ) ) )
116115oveq2d 5911 . 2  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( B F ( P `  B ) )  =  ( B F ( 2nd `  ( R `
 ( `' G `  B ) ) ) ) )
117108, 116eqtr4d 2225 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468    C_ wss 3144   <.cop 3610    |-> cmpt 4079   suc csuc 4383   omcom 4607    X. cxp 4642   `'ccnv 4643   dom cdm 4644   ran crn 4645   Fun wfun 5229   -->wf 5231   -1-1-onto->wf1o 5234   ` cfv 5235  (class class class)co 5895    e. cmpo 5897   1stc1st 6162   2ndc2nd 6163  freccfrec 6414   1c1 7841    + caddc 7843   ZZcz 9282   ZZ>=cuz 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558
This theorem is referenced by:  frecuzrdgsuct  10454
  Copyright terms: Public domain W3C validator