ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvi GIF version

Theorem fvi 5690
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fvi (𝐴𝑉 → ( I ‘𝐴) = 𝐴)

Proof of Theorem fvi
StepHypRef Expression
1 funi 5349 . 2 Fun I
2 ididg 4874 . 2 (𝐴𝑉𝐴 I 𝐴)
3 funbrfv 5669 . 2 (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴))
41, 2, 3mpsyl 65 1 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200   class class class wbr 4082   I cid 4378  Fun wfun 5311  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by:  fvresi  5831  seqfeq3  10746  facnn  10944  fac0  10945  fac1  10946  facp1  10947  bcval5  10980  bcn2  10981  s1val  11145  climshft2  11812
  Copyright terms: Public domain W3C validator