ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facp1 Unicode version

Theorem facp1 10317
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )

Proof of Theorem facp1
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8831 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 elnnuz 9212 . . . . . . 7  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
32biimpi 119 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  1 )
)
4 fvi 5410 . . . . . . . 8  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  =  f )
5 eluzelcn 9187 . . . . . . . 8  |-  ( f  e.  ( ZZ>= `  1
)  ->  f  e.  CC )
64, 5eqeltrd 2176 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
76adantl 273 . . . . . 6  |-  ( ( N  e.  NN  /\  f  e.  ( ZZ>= ` 
1 ) )  -> 
(  _I  `  f
)  e.  CC )
8 mulcl 7619 . . . . . . 7  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
98adantl 273 . . . . . 6  |-  ( ( N  e.  NN  /\  ( f  e.  CC  /\  g  e.  CC ) )  ->  ( f  x.  g )  e.  CC )
103, 7, 9seq3p1 10076 . . . . 5  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  _I  ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  (  _I  `  ( N  +  1
) ) ) )
11 peano2nn 8590 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
12 fvi 5410 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN  ->  (  _I  `  ( N  + 
1 ) )  =  ( N  +  1 ) )
1311, 12syl 14 . . . . . 6  |-  ( N  e.  NN  ->  (  _I  `  ( N  + 
1 ) )  =  ( N  +  1 ) )
1413oveq2d 5722 . . . . 5  |-  ( N  e.  NN  ->  (
(  seq 1 (  x.  ,  _I  ) `  N )  x.  (  _I  `  ( N  + 
1 ) ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  ( N  + 
1 ) ) )
1510, 14eqtrd 2132 . . . 4  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  _I  ) `  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  ( N  + 
1 ) ) )
16 facnn 10314 . . . . 5  |-  ( ( N  +  1 )  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  (  seq 1
(  x.  ,  _I  ) `  ( N  +  1 ) ) )
1711, 16syl 14 . . . 4  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  (  seq 1
(  x.  ,  _I  ) `  ( N  +  1 ) ) )
18 facnn 10314 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
1918oveq1d 5721 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  ( (  seq 1 (  x.  ,  _I  ) `  N )  x.  ( N  + 
1 ) ) )
2015, 17, 193eqtr4d 2142 . . 3  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
21 0p1e1 8692 . . . . . 6  |-  ( 0  +  1 )  =  1
2221fveq2i 5356 . . . . 5  |-  ( ! `
 ( 0  +  1 ) )  =  ( ! `  1
)
23 fac1 10316 . . . . 5  |-  ( ! `
 1 )  =  1
2422, 23eqtri 2120 . . . 4  |-  ( ! `
 ( 0  +  1 ) )  =  1
25 fvoveq1 5729 . . . 4  |-  ( N  =  0  ->  ( ! `  ( N  +  1 ) )  =  ( ! `  ( 0  +  1 ) ) )
26 fveq2 5353 . . . . . 6  |-  ( N  =  0  ->  ( ! `  N )  =  ( ! ` 
0 ) )
27 oveq1 5713 . . . . . 6  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2826, 27oveq12d 5724 . . . . 5  |-  ( N  =  0  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  ( ( ! `
 0 )  x.  ( 0  +  1 ) ) )
29 fac0 10315 . . . . . . 7  |-  ( ! `
 0 )  =  1
3029, 21oveq12i 5718 . . . . . 6  |-  ( ( ! `  0 )  x.  ( 0  +  1 ) )  =  ( 1  x.  1 )
31 1t1e1 8724 . . . . . 6  |-  ( 1  x.  1 )  =  1
3230, 31eqtri 2120 . . . . 5  |-  ( ( ! `  0 )  x.  ( 0  +  1 ) )  =  1
3328, 32syl6eq 2148 . . . 4  |-  ( N  =  0  ->  (
( ! `  N
)  x.  ( N  +  1 ) )  =  1 )
3424, 25, 333eqtr4a 2158 . . 3  |-  ( N  =  0  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
3520, 34jaoi 677 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ! `  ( N  +  1
) )  =  ( ( ! `  N
)  x.  ( N  +  1 ) ) )
361, 35sylbi 120 1  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 670    = wceq 1299    e. wcel 1448    _I cid 4148   ` cfv 5059  (class class class)co 5706   CCcc 7498   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505   NNcn 8578   NN0cn0 8829   ZZ>=cuz 9176    seqcseq 10059   !cfa 10312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060  df-fac 10313
This theorem is referenced by:  fac2  10318  fac3  10319  fac4  10320  facnn2  10321  faccl  10322  facdiv  10325  facwordi  10327  faclbnd  10328  faclbnd6  10331  facubnd  10332  bcm1k  10347  bcp1n  10348  4bc2eq6  10361  efcllemp  11162  ef01bndlem  11261  eirraplem  11278  dvdsfac  11353  prmfac1  11623  ex-fac  12543
  Copyright terms: Public domain W3C validator