ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq3 Unicode version

Theorem seqfeq3 10514
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m  |-  ( ph  ->  M  e.  ZZ )
seqfeq3.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seqfeq3.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqfeq3.id  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
Assertion
Ref Expression
seqfeq3  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
Distinct variable groups:    ph, x, y   
x, F, y    x, M, y    x,  .+ , y    x, Q, y    x, S, y

Proof of Theorem seqfeq3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seqfeq3.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seqfeq3.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 seqfeq3.cl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4seqf 10463 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
65ffnd 5368 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
7 seqfeq3.id . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
87, 4eqeltrrd 2255 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
91, 2, 3, 8seqf 10463 . . 3  |-  ( ph  ->  seq M ( Q ,  F ) : ( ZZ>= `  M ) --> S )
109ffnd 5368 . 2  |-  ( ph  ->  seq M ( Q ,  F )  Fn  ( ZZ>= `  M )
)
115ffvelcdmda 5653 . . . 4  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  a
)  e.  S )
12 fvi 5575 . . . 4  |-  ( (  seq M (  .+  ,  F ) `  a
)  e.  S  -> 
(  _I  `  (  seq M (  .+  ,  F ) `  a
) )  =  (  seq M (  .+  ,  F ) `  a
) )
1311, 12syl 14 . . 3  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  _I  `  (  seq M ( 
.+  ,  F ) `
 a ) )  =  (  seq M
(  .+  ,  F
) `  a )
)
144adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
153adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
16 simpr 110 . . . 4  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  a  e.  ( ZZ>= `  M )
)
177adantlr 477 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
18 fvi 5575 . . . . . 6  |-  ( ( x  .+  y )  e.  S  ->  (  _I  `  ( x  .+  y ) )  =  ( x  .+  y
) )
1914, 18syl 14 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  (
x  .+  y )
)  =  ( x 
.+  y ) )
20 fvi 5575 . . . . . . 7  |-  ( x  e.  S  ->  (  _I  `  x )  =  x )
2120ad2antrl 490 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  x
)  =  x )
22 fvi 5575 . . . . . . 7  |-  ( y  e.  S  ->  (  _I  `  y )  =  y )
2322ad2antll 491 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  y
)  =  y )
2421, 23oveq12d 5895 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( (  _I  `  x ) Q (  _I  `  y ) )  =  ( x Q y ) )
2517, 19, 243eqtr4d 2220 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  (
x  .+  y )
)  =  ( (  _I  `  x ) Q (  _I  `  y ) ) )
26 fvi 5575 . . . . 5  |-  ( ( F `  x )  e.  S  ->  (  _I  `  ( F `  x ) )  =  ( F `  x
) )
2715, 26syl 14 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  (  _I  `  ( F `  x
) )  =  ( F `  x ) )
288adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
2914, 15, 16, 25, 27, 15, 28seq3homo 10512 . . 3  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  _I  `  (  seq M ( 
.+  ,  F ) `
 a ) )  =  (  seq M
( Q ,  F
) `  a )
)
3013, 29eqtr3d 2212 . 2  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  a
)  =  (  seq M ( Q ,  F ) `  a
) )
316, 10, 30eqfnfvd 5618 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    _I cid 4290   ` cfv 5218  (class class class)co 5877   ZZcz 9255   ZZ>=cuz 9530    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  mulgpropdg  13030
  Copyright terms: Public domain W3C validator