ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq3 Unicode version

Theorem seqfeq3 10603
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m  |-  ( ph  ->  M  e.  ZZ )
seqfeq3.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
seqfeq3.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
seqfeq3.id  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
Assertion
Ref Expression
seqfeq3  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
Distinct variable groups:    ph, x, y   
x, F, y    x, M, y    x,  .+ , y    x, Q, y    x, S, y

Proof of Theorem seqfeq3
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 seqfeq3.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 seqfeq3.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
4 seqfeq3.cl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
51, 2, 3, 4seqf 10538 . . 3  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
65ffnd 5405 . 2  |-  ( ph  ->  seq M (  .+  ,  F )  Fn  ( ZZ>=
`  M ) )
7 seqfeq3.id . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
87, 4eqeltrrd 2271 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
91, 2, 3, 8seqf 10538 . . 3  |-  ( ph  ->  seq M ( Q ,  F ) : ( ZZ>= `  M ) --> S )
109ffnd 5405 . 2  |-  ( ph  ->  seq M ( Q ,  F )  Fn  ( ZZ>= `  M )
)
115ffvelcdmda 5694 . . . 4  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  a
)  e.  S )
12 fvi 5615 . . . 4  |-  ( (  seq M (  .+  ,  F ) `  a
)  e.  S  -> 
(  _I  `  (  seq M (  .+  ,  F ) `  a
) )  =  (  seq M (  .+  ,  F ) `  a
) )
1311, 12syl 14 . . 3  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  _I  `  (  seq M ( 
.+  ,  F ) `
 a ) )  =  (  seq M
(  .+  ,  F
) `  a )
)
144adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
153adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
16 simpr 110 . . . 4  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  a  e.  ( ZZ>= `  M )
)
177adantlr 477 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x Q y ) )
18 fvi 5615 . . . . . 6  |-  ( ( x  .+  y )  e.  S  ->  (  _I  `  ( x  .+  y ) )  =  ( x  .+  y
) )
1914, 18syl 14 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  (
x  .+  y )
)  =  ( x 
.+  y ) )
20 fvi 5615 . . . . . . 7  |-  ( x  e.  S  ->  (  _I  `  x )  =  x )
2120ad2antrl 490 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  x
)  =  x )
22 fvi 5615 . . . . . . 7  |-  ( y  e.  S  ->  (  _I  `  y )  =  y )
2322ad2antll 491 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  y
)  =  y )
2421, 23oveq12d 5937 . . . . 5  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( (  _I  `  x ) Q (  _I  `  y ) )  =  ( x Q y ) )
2517, 19, 243eqtr4d 2236 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
(  _I  `  (
x  .+  y )
)  =  ( (  _I  `  x ) Q (  _I  `  y ) ) )
26 fvi 5615 . . . . 5  |-  ( ( F `  x )  e.  S  ->  (  _I  `  ( F `  x ) )  =  ( F `  x
) )
2715, 26syl 14 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  x  e.  ( ZZ>= `  M )
)  ->  (  _I  `  ( F `  x
) )  =  ( F `  x ) )
288adantlr 477 . . . 4  |-  ( ( ( ph  /\  a  e.  ( ZZ>= `  M )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x Q y )  e.  S )
2914, 15, 16, 25, 27, 15, 28seq3homo 10601 . . 3  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  _I  `  (  seq M ( 
.+  ,  F ) `
 a ) )  =  (  seq M
( Q ,  F
) `  a )
)
3013, 29eqtr3d 2228 . 2  |-  ( (
ph  /\  a  e.  ( ZZ>= `  M )
)  ->  (  seq M (  .+  ,  F ) `  a
)  =  (  seq M ( Q ,  F ) `  a
) )
316, 10, 30eqfnfvd 5659 1  |-  ( ph  ->  seq M (  .+  ,  F )  =  seq M ( Q ,  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    _I cid 4320   ` cfv 5255  (class class class)co 5919   ZZcz 9320   ZZ>=cuz 9595    seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522
This theorem is referenced by:  mulgpropdg  13237
  Copyright terms: Public domain W3C validator