Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqfeq3 | Unicode version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq3.m | |
seqfeq3.f | |
seqfeq3.cl | |
seqfeq3.id |
Ref | Expression |
---|---|
seqfeq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . 4 | |
2 | seqfeq3.m | . . . 4 | |
3 | seqfeq3.f | . . . 4 | |
4 | seqfeq3.cl | . . . 4 | |
5 | 1, 2, 3, 4 | seqf 10396 | . . 3 |
6 | 5 | ffnd 5338 | . 2 |
7 | seqfeq3.id | . . . . 5 | |
8 | 7, 4 | eqeltrrd 2244 | . . . 4 |
9 | 1, 2, 3, 8 | seqf 10396 | . . 3 |
10 | 9 | ffnd 5338 | . 2 |
11 | 5 | ffvelrnda 5620 | . . . 4 |
12 | fvi 5543 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | 4 | adantlr 469 | . . . 4 |
15 | 3 | adantlr 469 | . . . 4 |
16 | simpr 109 | . . . 4 | |
17 | 7 | adantlr 469 | . . . . 5 |
18 | fvi 5543 | . . . . . 6 | |
19 | 14, 18 | syl 14 | . . . . 5 |
20 | fvi 5543 | . . . . . . 7 | |
21 | 20 | ad2antrl 482 | . . . . . 6 |
22 | fvi 5543 | . . . . . . 7 | |
23 | 22 | ad2antll 483 | . . . . . 6 |
24 | 21, 23 | oveq12d 5860 | . . . . 5 |
25 | 17, 19, 24 | 3eqtr4d 2208 | . . . 4 |
26 | fvi 5543 | . . . . 5 | |
27 | 15, 26 | syl 14 | . . . 4 |
28 | 8 | adantlr 469 | . . . 4 |
29 | 14, 15, 16, 25, 27, 15, 28 | seq3homo 10445 | . . 3 |
30 | 13, 29 | eqtr3d 2200 | . 2 |
31 | 6, 10, 30 | eqfnfvd 5586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cid 4266 cfv 5188 (class class class)co 5842 cz 9191 cuz 9466 cseq 10380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |