ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz1 Unicode version

Theorem elfz1 9970
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzval 9967 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } )
21eleq2d 2240 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } ) )
3 breq2 3993 . . . . 5  |-  ( j  =  K  ->  ( M  <_  j  <->  M  <_  K ) )
4 breq1 3992 . . . . 5  |-  ( j  =  K  ->  (
j  <_  N  <->  K  <_  N ) )
53, 4anbi12d 470 . . . 4  |-  ( j  =  K  ->  (
( M  <_  j  /\  j  <_  N )  <-> 
( M  <_  K  /\  K  <_  N ) ) )
65elrab 2886 . . 3  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
7 3anass 977 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
86, 7bitr4i 186 . 2  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )
92, 8bitrdi 195 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {crab 2452   class class class wbr 3989  (class class class)co 5853    <_ cle 7955   ZZcz 9212   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-neg 8093  df-z 9213  df-fz 9966
This theorem is referenced by:  elfz  9971  elfz2  9972  fzen  9999  fzaddel  10015  elfzm11  10047  fznn0  10069  phicl2  12168
  Copyright terms: Public domain W3C validator