Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfz1 | Unicode version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) |
Ref | Expression |
---|---|
elfz1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzval 9946 | . . 3 | |
2 | 1 | eleq2d 2236 | . 2 |
3 | breq2 3986 | . . . . 5 | |
4 | breq1 3985 | . . . . 5 | |
5 | 3, 4 | anbi12d 465 | . . . 4 |
6 | 5 | elrab 2882 | . . 3 |
7 | 3anass 972 | . . 3 | |
8 | 6, 7 | bitr4i 186 | . 2 |
9 | 2, 8 | bitrdi 195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 crab 2448 class class class wbr 3982 (class class class)co 5842 cle 7934 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-fz 9945 |
This theorem is referenced by: elfz 9950 elfz2 9951 fzen 9978 fzaddel 9994 elfzm11 10026 fznn0 10048 phicl2 12146 |
Copyright terms: Public domain | W3C validator |