ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinv11 Unicode version

Theorem grpinv11 13144
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
grpinv11.g  |-  ( ph  ->  G  e.  Grp )
grpinv11.x  |-  ( ph  ->  X  e.  B )
grpinv11.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpinv11  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 5555 . . . . 5  |-  ( ( N `  X )  =  ( N `  Y )  ->  ( N `  ( N `  X ) )  =  ( N `  ( N `  Y )
) )
21adantl 277 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  ( N `  ( N `
 Y ) ) )
3 grpinv11.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 grpinv11.x . . . . . 6  |-  ( ph  ->  X  e.  B )
5 grpinvinv.b . . . . . . 7  |-  B  =  ( Base `  G
)
6 grpinvinv.n . . . . . . 7  |-  N  =  ( invg `  G )
75, 6grpinvinv 13142 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
83, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  X )
)  =  X )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  X )
10 grpinv11.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
115, 6grpinvinv 13142 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
123, 10, 11syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  Y
) )  =  Y )
142, 9, 133eqtr3d 2234 . . 3  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  X  =  Y )
1514ex 115 . 2  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  ->  X  =  Y ) )
16 fveq2 5555 . 2  |-  ( X  =  Y  ->  ( N `  X )  =  ( N `  Y ) )
1715, 16impbid1 142 1  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5255   Basecbs 12621   Grpcgrp 13075   invgcminusg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator