ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinv11 Unicode version

Theorem grpinv11 12945
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
grpinv11.g  |-  ( ph  ->  G  e.  Grp )
grpinv11.x  |-  ( ph  ->  X  e.  B )
grpinv11.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpinv11  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 5517 . . . . 5  |-  ( ( N `  X )  =  ( N `  Y )  ->  ( N `  ( N `  X ) )  =  ( N `  ( N `  Y )
) )
21adantl 277 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  ( N `  ( N `
 Y ) ) )
3 grpinv11.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 grpinv11.x . . . . . 6  |-  ( ph  ->  X  e.  B )
5 grpinvinv.b . . . . . . 7  |-  B  =  ( Base `  G
)
6 grpinvinv.n . . . . . . 7  |-  N  =  ( invg `  G )
75, 6grpinvinv 12943 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
83, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  X )
)  =  X )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  X )
10 grpinv11.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
115, 6grpinvinv 12943 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
123, 10, 11syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  Y
) )  =  Y )
142, 9, 133eqtr3d 2218 . . 3  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  X  =  Y )
1514ex 115 . 2  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  ->  X  =  Y ) )
16 fveq2 5517 . 2  |-  ( X  =  Y  ->  ( N `  X )  =  ( N `  Y ) )
1715, 16impbid1 142 1  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5218   Basecbs 12465   Grpcgrp 12883   invgcminusg 12884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12781  df-sgrp 12814  df-mnd 12824  df-grp 12886  df-minusg 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator