ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinv11 Unicode version

Theorem grpinv11 13201
Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
grpinv11.g  |-  ( ph  ->  G  e.  Grp )
grpinv11.x  |-  ( ph  ->  X  e.  B )
grpinv11.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
grpinv11  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )

Proof of Theorem grpinv11
StepHypRef Expression
1 fveq2 5558 . . . . 5  |-  ( ( N `  X )  =  ( N `  Y )  ->  ( N `  ( N `  X ) )  =  ( N `  ( N `  Y )
) )
21adantl 277 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  ( N `  ( N `
 Y ) ) )
3 grpinv11.g . . . . . 6  |-  ( ph  ->  G  e.  Grp )
4 grpinv11.x . . . . . 6  |-  ( ph  ->  X  e.  B )
5 grpinvinv.b . . . . . . 7  |-  B  =  ( Base `  G
)
6 grpinvinv.n . . . . . . 7  |-  N  =  ( invg `  G )
75, 6grpinvinv 13199 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  ( N `  X )
)  =  X )
83, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  X )
)  =  X )
98adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  X
) )  =  X )
10 grpinv11.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
115, 6grpinvinv 13199 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
123, 10, 11syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1312adantr 276 . . . 4  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  ( N `  ( N `  Y
) )  =  Y )
142, 9, 133eqtr3d 2237 . . 3  |-  ( (
ph  /\  ( N `  X )  =  ( N `  Y ) )  ->  X  =  Y )
1514ex 115 . 2  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  ->  X  =  Y ) )
16 fveq2 5558 . 2  |-  ( X  =  Y  ->  ( N `  X )  =  ( N `  Y ) )
1715, 16impbid1 142 1  |-  ( ph  ->  ( ( N `  X )  =  ( N `  Y )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5258   Basecbs 12678   Grpcgrp 13132   invgcminusg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator