ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvcnv Unicode version

Theorem grpinvcnv 13400
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b  |-  B  =  ( Base `  G
)
grpinvinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvcnv  |-  ( G  e.  Grp  ->  `' N  =  N )

Proof of Theorem grpinvcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . . . 4  |-  ( x  e.  B  |->  ( N `
 x ) )  =  ( x  e.  B  |->  ( N `  x ) )
2 grpinvinv.b . . . . 5  |-  B  =  ( Base `  G
)
3 grpinvinv.n . . . . 5  |-  N  =  ( invg `  G )
42, 3grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( N `  x
)  e.  B )
52, 3grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( N `  y
)  e.  B )
6 eqid 2205 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
7 eqid 2205 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
82, 6, 7, 3grpinvid1 13384 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
983com23 1212 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
102, 6, 7, 3grpinvid2 13385 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  x )  =  y  <-> 
( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
119, 10bitr4d 191 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( N `  y )  =  x  <-> 
( N `  x
)  =  y ) )
12113expb 1207 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( N `  y
)  =  x  <->  ( N `  x )  =  y ) )
13 eqcom 2207 . . . . 5  |-  ( x  =  ( N `  y )  <->  ( N `  y )  =  x )
14 eqcom 2207 . . . . 5  |-  ( y  =  ( N `  x )  <->  ( N `  x )  =  y )
1512, 13, 143bitr4g 223 . . . 4  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  =  ( N `
 y )  <->  y  =  ( N `  x ) ) )
161, 4, 5, 15f1ocnv2d 6150 . . 3  |-  ( G  e.  Grp  ->  (
( x  e.  B  |->  ( N `  x
) ) : B -1-1-onto-> B  /\  `' ( x  e.  B  |->  ( N `  x ) )  =  ( y  e.  B  |->  ( N `  y
) ) ) )
1716simprd 114 . 2  |-  ( G  e.  Grp  ->  `' ( x  e.  B  |->  ( N `  x
) )  =  ( y  e.  B  |->  ( N `  y ) ) )
182, 3grpinvf 13379 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
1918feqmptd 5632 . . 3  |-  ( G  e.  Grp  ->  N  =  ( x  e.  B  |->  ( N `  x ) ) )
2019cnveqd 4854 . 2  |-  ( G  e.  Grp  ->  `' N  =  `' (
x  e.  B  |->  ( N `  x ) ) )
2118feqmptd 5632 . 2  |-  ( G  e.  Grp  ->  N  =  ( y  e.  B  |->  ( N `  y ) ) )
2217, 20, 213eqtr4d 2248 1  |-  ( G  e.  Grp  ->  `' N  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    |-> cmpt 4105   `'ccnv 4674   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336
This theorem is referenced by:  grpinvf1o  13402
  Copyright terms: Public domain W3C validator