| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | Unicode version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b |
|
| grpinvinv.n |
|
| Ref | Expression |
|---|---|
| grpinvinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b |
. . . . 5
| |
| 2 | grpinvinv.n |
. . . . 5
| |
| 3 | 1, 2 | grpinvcl 13495 |
. . . 4
|
| 4 | eqid 2207 |
. . . . 5
| |
| 5 | eqid 2207 |
. . . . 5
| |
| 6 | 1, 4, 5, 2 | grprinv 13498 |
. . . 4
|
| 7 | 3, 6 | syldan 282 |
. . 3
|
| 8 | 1, 4, 5, 2 | grplinv 13497 |
. . 3
|
| 9 | 7, 8 | eqtr4d 2243 |
. 2
|
| 10 | simpl 109 |
. . 3
| |
| 11 | 1, 2 | grpinvcl 13495 |
. . . 4
|
| 12 | 3, 11 | syldan 282 |
. . 3
|
| 13 | simpr 110 |
. . 3
| |
| 14 | 1, 4 | grplcan 13509 |
. . 3
|
| 15 | 10, 12, 13, 3, 14 | syl13anc 1252 |
. 2
|
| 16 | 9, 15 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 |
| This theorem is referenced by: grpinv11 13516 grpinvnz 13518 grpsubinv 13520 grpinvsub 13529 grpsubeq0 13533 grpnpcan 13539 mulgneg 13591 mulgnegneg 13592 mulginvinv 13599 mulgdir 13605 mulgass 13610 eqger 13675 ablsub2inv 13762 invghm 13780 rngm2neg 13826 ringm2neg 13932 unitinvinv 14001 unitnegcl 14007 lspsnneg 14297 |
| Copyright terms: Public domain | W3C validator |