| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | Unicode version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b |
|
| grpinvinv.n |
|
| Ref | Expression |
|---|---|
| grpinvinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b |
. . . . 5
| |
| 2 | grpinvinv.n |
. . . . 5
| |
| 3 | 1, 2 | grpinvcl 13581 |
. . . 4
|
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | 1, 4, 5, 2 | grprinv 13584 |
. . . 4
|
| 7 | 3, 6 | syldan 282 |
. . 3
|
| 8 | 1, 4, 5, 2 | grplinv 13583 |
. . 3
|
| 9 | 7, 8 | eqtr4d 2265 |
. 2
|
| 10 | simpl 109 |
. . 3
| |
| 11 | 1, 2 | grpinvcl 13581 |
. . . 4
|
| 12 | 3, 11 | syldan 282 |
. . 3
|
| 13 | simpr 110 |
. . 3
| |
| 14 | 1, 4 | grplcan 13595 |
. . 3
|
| 15 | 10, 12, 13, 3, 14 | syl13anc 1273 |
. 2
|
| 16 | 9, 15 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 |
| This theorem is referenced by: grpinv11 13602 grpinvnz 13604 grpsubinv 13606 grpinvsub 13615 grpsubeq0 13619 grpnpcan 13625 mulgneg 13677 mulgnegneg 13678 mulginvinv 13685 mulgdir 13691 mulgass 13696 eqger 13761 ablsub2inv 13848 invghm 13866 rngm2neg 13912 ringm2neg 14018 unitinvinv 14088 unitnegcl 14094 lspsnneg 14384 |
| Copyright terms: Public domain | W3C validator |