| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | Unicode version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b |
|
| grpinvinv.n |
|
| Ref | Expression |
|---|---|
| grpinvinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b |
. . . . 5
| |
| 2 | grpinvinv.n |
. . . . 5
| |
| 3 | 1, 2 | grpinvcl 13380 |
. . . 4
|
| 4 | eqid 2205 |
. . . . 5
| |
| 5 | eqid 2205 |
. . . . 5
| |
| 6 | 1, 4, 5, 2 | grprinv 13383 |
. . . 4
|
| 7 | 3, 6 | syldan 282 |
. . 3
|
| 8 | 1, 4, 5, 2 | grplinv 13382 |
. . 3
|
| 9 | 7, 8 | eqtr4d 2241 |
. 2
|
| 10 | simpl 109 |
. . 3
| |
| 11 | 1, 2 | grpinvcl 13380 |
. . . 4
|
| 12 | 3, 11 | syldan 282 |
. . 3
|
| 13 | simpr 110 |
. . 3
| |
| 14 | 1, 4 | grplcan 13394 |
. . 3
|
| 15 | 10, 12, 13, 3, 14 | syl13anc 1252 |
. 2
|
| 16 | 9, 15 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 |
| This theorem is referenced by: grpinv11 13401 grpinvnz 13403 grpsubinv 13405 grpinvsub 13414 grpsubeq0 13418 grpnpcan 13424 mulgneg 13476 mulgnegneg 13477 mulginvinv 13484 mulgdir 13490 mulgass 13495 eqger 13560 ablsub2inv 13647 invghm 13665 rngm2neg 13711 ringm2neg 13817 unitinvinv 13886 unitnegcl 13892 lspsnneg 14182 |
| Copyright terms: Public domain | W3C validator |