| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | Unicode version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| grpinvinv.b | 
 | 
| grpinvinv.n | 
 | 
| Ref | Expression | 
|---|---|
| grpinvinv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpinvinv.b | 
. . . . 5
 | |
| 2 | grpinvinv.n | 
. . . . 5
 | |
| 3 | 1, 2 | grpinvcl 13180 | 
. . . 4
 | 
| 4 | eqid 2196 | 
. . . . 5
 | |
| 5 | eqid 2196 | 
. . . . 5
 | |
| 6 | 1, 4, 5, 2 | grprinv 13183 | 
. . . 4
 | 
| 7 | 3, 6 | syldan 282 | 
. . 3
 | 
| 8 | 1, 4, 5, 2 | grplinv 13182 | 
. . 3
 | 
| 9 | 7, 8 | eqtr4d 2232 | 
. 2
 | 
| 10 | simpl 109 | 
. . 3
 | |
| 11 | 1, 2 | grpinvcl 13180 | 
. . . 4
 | 
| 12 | 3, 11 | syldan 282 | 
. . 3
 | 
| 13 | simpr 110 | 
. . 3
 | |
| 14 | 1, 4 | grplcan 13194 | 
. . 3
 | 
| 15 | 10, 12, 13, 3, 14 | syl13anc 1251 | 
. 2
 | 
| 16 | 9, 15 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 | 
| This theorem is referenced by: grpinv11 13201 grpinvnz 13203 grpsubinv 13205 grpinvsub 13214 grpsubeq0 13218 grpnpcan 13224 mulgneg 13270 mulgnegneg 13271 mulginvinv 13278 mulgdir 13284 mulgass 13289 eqger 13354 ablsub2inv 13441 invghm 13459 rngm2neg 13505 ringm2neg 13611 unitinvinv 13680 unitnegcl 13686 lspsnneg 13976 | 
| Copyright terms: Public domain | W3C validator |