| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvinv | Unicode version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b |
|
| grpinvinv.n |
|
| Ref | Expression |
|---|---|
| grpinvinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b |
. . . . 5
| |
| 2 | grpinvinv.n |
. . . . 5
| |
| 3 | 1, 2 | grpinvcl 13413 |
. . . 4
|
| 4 | eqid 2205 |
. . . . 5
| |
| 5 | eqid 2205 |
. . . . 5
| |
| 6 | 1, 4, 5, 2 | grprinv 13416 |
. . . 4
|
| 7 | 3, 6 | syldan 282 |
. . 3
|
| 8 | 1, 4, 5, 2 | grplinv 13415 |
. . 3
|
| 9 | 7, 8 | eqtr4d 2241 |
. 2
|
| 10 | simpl 109 |
. . 3
| |
| 11 | 1, 2 | grpinvcl 13413 |
. . . 4
|
| 12 | 3, 11 | syldan 282 |
. . 3
|
| 13 | simpr 110 |
. . 3
| |
| 14 | 1, 4 | grplcan 13427 |
. . 3
|
| 15 | 10, 12, 13, 3, 14 | syl13anc 1252 |
. 2
|
| 16 | 9, 15 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-inn 9039 df-2 9097 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-minusg 13369 |
| This theorem is referenced by: grpinv11 13434 grpinvnz 13436 grpsubinv 13438 grpinvsub 13447 grpsubeq0 13451 grpnpcan 13457 mulgneg 13509 mulgnegneg 13510 mulginvinv 13517 mulgdir 13523 mulgass 13528 eqger 13593 ablsub2inv 13680 invghm 13698 rngm2neg 13744 ringm2neg 13850 unitinvinv 13919 unitnegcl 13925 lspsnneg 14215 |
| Copyright terms: Public domain | W3C validator |