ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooss2 Unicode version

Theorem iooss2 9935
Description: Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooss2  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )

Proof of Theorem iooss2
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 9910 . 2  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
2 xrltletr 9825 . 2  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w  <  B  /\  B  <_  C )  ->  w  <  C
) )
31, 1, 2ixxss2 9923 1  |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160    C_ wss 3144   class class class wbr 4018  (class class class)co 5891   RR*cxr 8009    < clt 8010    <_ cle 8011   (,)cioo 9906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-ioo 9910
This theorem is referenced by:  tgqioo  14444  cos0pilt1  14670
  Copyright terms: Public domain W3C validator