ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss2 Unicode version

Theorem ixxss2 10027
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss2.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
ixxss2.3  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
Assertion
Ref Expression
ixxss2  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
w, W
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    O( y, z)    W( x, y, z)

Proof of Theorem ixxss2
StepHypRef Expression
1 ixxss2.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
21elixx3g 10023 . . . . . . 7  |-  ( w  e.  ( A P B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  /\  ( A R w  /\  w T B ) ) )
32simplbi 274 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* ) )
43adantl 277 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A  e.  RR*  /\  B  e. 
RR*  /\  w  e.  RR* ) )
54simp3d 1014 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  RR* )
62simprbi 275 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A R w  /\  w T B ) )
76adantl 277 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A R w  /\  w T B ) )
87simpld 112 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A R w )
97simprd 114 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w T B )
10 simplr 528 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B W C )
114simp2d 1013 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B  e.  RR* )
12 simpll 527 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  C  e.  RR* )
13 ixxss2.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
145, 11, 12, 13syl3anc 1250 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( (
w T B  /\  B W C )  ->  w S C ) )
159, 10, 14mp2and 433 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w S C )
164simp1d 1012 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A  e.  RR* )
17 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
1817elixx1 10019 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( A O C )  <->  ( w  e.  RR*  /\  A R w  /\  w S C ) ) )
1916, 12, 18syl2anc 411 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( w  e.  ( A O C )  <->  ( w  e. 
RR*  /\  A R w  /\  w S C ) ) )
205, 8, 15, 19mpbir3and 1183 . . 3  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  ( A O C ) )
2120ex 115 . 2  |-  ( ( C  e.  RR*  /\  B W C )  ->  (
w  e.  ( A P B )  ->  w  e.  ( A O C ) ) )
2221ssrdv 3199 1  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166   class class class wbr 4044  (class class class)co 5944    e. cmpo 5946   RR*cxr 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111
This theorem is referenced by:  iooss2  10039
  Copyright terms: Public domain W3C validator