| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxss2 | Unicode version | ||
| Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ixxssixx.1 |
|
| ixxss2.2 |
|
| ixxss2.3 |
|
| Ref | Expression |
|---|---|
| ixxss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixxss2.2 |
. . . . . . . 8
| |
| 2 | 1 | elixx3g 10058 |
. . . . . . 7
|
| 3 | 2 | simplbi 274 |
. . . . . 6
|
| 4 | 3 | adantl 277 |
. . . . 5
|
| 5 | 4 | simp3d 1014 |
. . . 4
|
| 6 | 2 | simprbi 275 |
. . . . . 6
|
| 7 | 6 | adantl 277 |
. . . . 5
|
| 8 | 7 | simpld 112 |
. . . 4
|
| 9 | 7 | simprd 114 |
. . . . 5
|
| 10 | simplr 528 |
. . . . 5
| |
| 11 | 4 | simp2d 1013 |
. . . . . 6
|
| 12 | simpll 527 |
. . . . . 6
| |
| 13 | ixxss2.3 |
. . . . . 6
| |
| 14 | 5, 11, 12, 13 | syl3anc 1250 |
. . . . 5
|
| 15 | 9, 10, 14 | mp2and 433 |
. . . 4
|
| 16 | 4 | simp1d 1012 |
. . . . 5
|
| 17 | ixxssixx.1 |
. . . . . 6
| |
| 18 | 17 | elixx1 10054 |
. . . . 5
|
| 19 | 16, 12, 18 | syl2anc 411 |
. . . 4
|
| 20 | 5, 8, 15, 19 | mpbir3and 1183 |
. . 3
|
| 21 | 20 | ex 115 |
. 2
|
| 22 | 21 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 |
| This theorem is referenced by: iooss2 10074 |
| Copyright terms: Public domain | W3C validator |