ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxss2 Unicode version

Theorem ixxss2 9688
Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxss2.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
ixxss2.3  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
Assertion
Ref Expression
ixxss2  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
w, W
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    O( y, z)    W( x, y, z)

Proof of Theorem ixxss2
StepHypRef Expression
1 ixxss2.2 . . . . . . . 8  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z T y ) } )
21elixx3g 9684 . . . . . . 7  |-  ( w  e.  ( A P B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* )  /\  ( A R w  /\  w T B ) ) )
32simplbi 272 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A  e.  RR*  /\  B  e.  RR*  /\  w  e. 
RR* ) )
43adantl 275 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A  e.  RR*  /\  B  e. 
RR*  /\  w  e.  RR* ) )
54simp3d 995 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  RR* )
62simprbi 273 . . . . . 6  |-  ( w  e.  ( A P B )  ->  ( A R w  /\  w T B ) )
76adantl 275 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( A R w  /\  w T B ) )
87simpld 111 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A R w )
97simprd 113 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w T B )
10 simplr 519 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B W C )
114simp2d 994 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  B  e.  RR* )
12 simpll 518 . . . . . 6  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  C  e.  RR* )
13 ixxss2.3 . . . . . 6  |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w T B  /\  B W C )  ->  w S C ) )
145, 11, 12, 13syl3anc 1216 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( (
w T B  /\  B W C )  ->  w S C ) )
159, 10, 14mp2and 429 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w S C )
164simp1d 993 . . . . 5  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  A  e.  RR* )
17 ixxssixx.1 . . . . . 6  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
1817elixx1 9680 . . . . 5  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( A O C )  <->  ( w  e.  RR*  /\  A R w  /\  w S C ) ) )
1916, 12, 18syl2anc 408 . . . 4  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  ( w  e.  ( A O C )  <->  ( w  e. 
RR*  /\  A R w  /\  w S C ) ) )
205, 8, 15, 19mpbir3and 1164 . . 3  |-  ( ( ( C  e.  RR*  /\  B W C )  /\  w  e.  ( A P B ) )  ->  w  e.  ( A O C ) )
2120ex 114 . 2  |-  ( ( C  e.  RR*  /\  B W C )  ->  (
w  e.  ( A P B )  ->  w  e.  ( A O C ) ) )
2221ssrdv 3103 1  |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2420    C_ wss 3071   class class class wbr 3929  (class class class)co 5774    e. cmpo 5776   RR*cxr 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804
This theorem is referenced by:  iooss2  9700
  Copyright terms: Public domain W3C validator