ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd1i Unicode version

Theorem ltadd1i 7978
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
lt2.3  |-  C  e.  RR
Assertion
Ref Expression
ltadd1i  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)

Proof of Theorem ltadd1i
StepHypRef Expression
1 lt2.1 . 2  |-  A  e.  RR
2 lt2.2 . 2  |-  B  e.  RR
3 lt2.3 . 2  |-  C  e.  RR
4 ltadd1 7905 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
) )
51, 2, 3, 4mp3an 1273 1  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 103    e. wcel 1438   class class class wbr 3845  (class class class)co 5652   RRcr 7347    + caddc 7351    < clt 7520
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-i2m1 7448  ax-0id 7451  ax-rnegex 7452  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-iota 4980  df-fv 5023  df-ov 5655  df-pnf 7522  df-mnf 7523  df-ltxr 7525
This theorem is referenced by:  inelr  8059  ef01bndlem  11043
  Copyright terms: Public domain W3C validator