![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltadd1i | Unicode version |
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
lt2.1 |
![]() ![]() ![]() ![]() |
lt2.2 |
![]() ![]() ![]() ![]() |
lt2.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ltadd1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | lt2.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | lt2.3 |
. 2
![]() ![]() ![]() ![]() | |
4 | ltadd1 7905 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | mp3an 1273 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-addcom 7443 ax-addass 7445 ax-i2m1 7448 ax-0id 7451 ax-rnegex 7452 ax-pre-ltadd 7459 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-xp 4444 df-iota 4980 df-fv 5023 df-ov 5655 df-pnf 7522 df-mnf 7523 df-ltxr 7525 |
This theorem is referenced by: inelr 8059 ef01bndlem 11043 |
Copyright terms: Public domain | W3C validator |