ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd1i Unicode version

Theorem ltadd1i 8378
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by NM, 21-Jan-1997.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
lt2.3  |-  C  e.  RR
Assertion
Ref Expression
ltadd1i  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)

Proof of Theorem ltadd1i
StepHypRef Expression
1 lt2.1 . 2  |-  A  e.  RR
2 lt2.2 . 2  |-  B  e.  RR
3 lt2.3 . 2  |-  C  e.  RR
4 ltadd1 8305 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
) )
51, 2, 3, 4mp3an 1319 1  |-  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2128   class class class wbr 3966  (class class class)co 5825   RRcr 7732    + caddc 7736    < clt 7913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-i2m1 7838  ax-0id 7841  ax-rnegex 7842  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-xp 4593  df-iota 5136  df-fv 5179  df-ov 5828  df-pnf 7915  df-mnf 7916  df-ltxr 7918
This theorem is referenced by:  inelr  8460  ef01bndlem  11657
  Copyright terms: Public domain W3C validator