Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltadd1 | Unicode version |
Description: Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd2 8338 | . 2 | |
2 | simp3 994 | . . . . 5 | |
3 | 2 | recnd 7948 | . . . 4 |
4 | simp1 992 | . . . . 5 | |
5 | 4 | recnd 7948 | . . . 4 |
6 | 3, 5 | addcomd 8070 | . . 3 |
7 | simp2 993 | . . . . 5 | |
8 | 7 | recnd 7948 | . . . 4 |
9 | 3, 8 | addcomd 8070 | . . 3 |
10 | 6, 9 | breq12d 4002 | . 2 |
11 | 1, 10 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 973 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 caddc 7777 clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: leadd1 8349 ltsubadd 8351 ltaddsub 8355 lt2add 8364 ltleadd 8365 ltadd1i 8421 ltadd1d 8457 reapadd1 8515 addltmul 9114 avglt2 9117 xltadd1 9833 icoshft 9947 fzonn0p1p1 10169 caucvgre 10945 |
Copyright terms: Public domain | W3C validator |