Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltadd1 | Unicode version |
Description: Addition to both sides of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 12-Nov-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltadd1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd2 8273 | . 2 | |
2 | simp3 984 | . . . . 5 | |
3 | 2 | recnd 7885 | . . . 4 |
4 | simp1 982 | . . . . 5 | |
5 | 4 | recnd 7885 | . . . 4 |
6 | 3, 5 | addcomd 8005 | . . 3 |
7 | simp2 983 | . . . . 5 | |
8 | 7 | recnd 7885 | . . . 4 |
9 | 3, 8 | addcomd 8005 | . . 3 |
10 | 6, 9 | breq12d 3974 | . 2 |
11 | 1, 10 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 963 wcel 2125 class class class wbr 3961 (class class class)co 5814 cr 7710 caddc 7714 clt 7891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-xp 4585 df-iota 5128 df-fv 5171 df-ov 5817 df-pnf 7893 df-mnf 7894 df-ltxr 7896 |
This theorem is referenced by: leadd1 8284 ltsubadd 8286 ltaddsub 8290 lt2add 8299 ltleadd 8300 ltadd1i 8356 ltadd1d 8392 reapadd1 8450 addltmul 9048 avglt2 9051 xltadd1 9758 icoshft 9872 fzonn0p1p1 10090 caucvgre 10858 |
Copyright terms: Public domain | W3C validator |