HomeHome Intuitionistic Logic Explorer
Theorem List (p. 85 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8401-8500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremleadd1i 8401 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C ) )
 
Theoremleadd2i 8402 Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) )
 
Theoremltsubaddi 8403 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <  C  <->  A  <  ( C  +  B ) )
 
Theoremlesubaddi 8404 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 30-Sep-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <_  C  <->  A  <_  ( C  +  B ) )
 
Theoremltsubadd2i 8405 'Less than' relationship between subtraction and addition. (Contributed by NM, 21-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <  C  <->  A  <  ( B  +  C ) )
 
Theoremlesubadd2i 8406 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  -  B )  <_  C  <->  A  <_  ( B  +  C ) )
 
Theoremltaddsubi 8407 'Less than' relationship between subtraction and addition. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( A  +  B )  <  C  <->  A  <  ( C  -  B ) )
 
Theoremlt2addi 8408 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  D  e.  RR   =>    |-  ( ( A  <  C 
 /\  B  <  D )  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremle2addi 8409 Adding both side of two inequalities. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  D  e.  RR   =>    |-  ( ( A  <_  C 
 /\  B  <_  D )  ->  ( A  +  B )  <_  ( C  +  D ) )
 
Theoremgt0ne0d 8410 Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremlt0ne0d 8411 Something less than zero is not zero. Deduction form. See also lt0ap0d 8547 which is similar but for apartness. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremleidd 8412 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  A )
 
Theoremlt0neg1d 8413 Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
 
Theoremlt0neg2d 8414 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  (
 0  <  A  <->  -u A  <  0
 ) )
 
Theoremle0neg1d 8415 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )
 
Theoremle0neg2d 8416 Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  (
 0  <_  A  <->  -u A  <_  0
 ) )
 
Theoremaddgegt0d 8417 Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremaddgtge0d 8418 Addition of positive and nonnegative numbers is positive. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremaddgt0d 8419 Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremaddge0d 8420 Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  ( A  +  B ) )
 
Theoremltnegd 8421 Negative of both sides of 'less than'. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  -u B  <  -u A ) )
 
Theoremlenegd 8422 Negative of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  -u B  <_  -u A ) )
 
Theoremltnegcon1d 8423 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -u A  <  B )   =>    |-  ( ph  ->  -u B  <  A )
 
Theoremltnegcon2d 8424 Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  -u B )   =>    |-  ( ph  ->  B  < 
 -u A )
 
Theoremlenegcon1d 8425 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  -u A  <_  B )   =>    |-  ( ph  ->  -u B  <_  A )
 
Theoremlenegcon2d 8426 Contraposition of negative in 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  -u B )   =>    |-  ( ph  ->  B  <_ 
 -u A )
 
Theoremltaddposd 8427 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  B  <  ( B  +  A ) ) )
 
Theoremltaddpos2d 8428 Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  B  <  ( A  +  B ) ) )
 
Theoremltsubposd 8429 Subtracting a positive number from another number decreases it. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  A  <->  ( B  -  A )  <  B ) )
 
Theoremposdifd 8430 Comparison of two numbers whose difference is positive. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
 
Theoremaddge01d 8431 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( A  +  B ) ) )
 
Theoremaddge02d 8432 A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  A  <_  ( B  +  A ) ) )
 
Theoremsubge0d 8433 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  ( A  -  B )  <->  B  <_  A ) )
 
Theoremsuble0d 8434 Nonpositive subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( A  -  B )  <_  0  <->  A  <_  B ) )
 
Theoremsubge02d 8435 Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <_  B  <->  ( A  -  B )  <_  A ) )
 
Theoremltadd1d 8436 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  +  C )  <  ( B  +  C ) ) )
 
Theoremleadd1d 8437 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C ) ) )
 
Theoremleadd2d 8438 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) ) )
 
Theoremltsubaddd 8439 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <  C  <->  A  <  ( C  +  B ) ) )
 
Theoremlesubaddd 8440 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <_  C  <->  A  <_  ( C  +  B ) ) )
 
Theoremltsubadd2d 8441 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <  C  <->  A  <  ( B  +  C ) ) )
 
Theoremlesubadd2d 8442 'Less than or equal to' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  -  B )  <_  C  <->  A  <_  ( B  +  C ) ) )
 
Theoremltaddsubd 8443 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  <->  A  <  ( C  -  B ) ) )
 
Theoremltaddsub2d 8444 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  <->  B  <  ( C  -  A ) ) )
 
Theoremleaddsub2d 8445 'Less than or equal to' relationship between and addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  (
 ( A  +  B )  <_  C  <->  B  <_  ( C  -  A ) ) )
 
Theoremsubled 8446 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( A  -  B )  <_  C )   =>    |-  ( ph  ->  ( A  -  C )  <_  B )
 
Theoremlesubd 8447 Swap subtrahends in an inequality. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  ( B  -  C ) )   =>    |-  ( ph  ->  C  <_  ( B  -  A ) )
 
Theoremltsub23d 8448 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( A  -  B )  <  C )   =>    |-  ( ph  ->  ( A  -  C )  <  B )
 
Theoremltsub13d 8449 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  ( B  -  C ) )   =>    |-  ( ph  ->  C  <  ( B  -  A ) )
 
Theoremlesub1d 8450 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  -  C )  <_  ( B  -  C ) ) )
 
Theoremlesub2d 8451 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  -  B )  <_  ( C  -  A ) ) )
 
Theoremltsub1d 8452 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( A  -  C )  <  ( B  -  C ) ) )
 
Theoremltsub2d 8453 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  -  B )  <  ( C  -  A ) ) )
 
Theoremltadd1dd 8454 Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  +  C )  <  ( B  +  C ) )
 
Theoremltsub1dd 8455 Subtraction from both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( A  -  C )  < 
 ( B  -  C ) )
 
Theoremltsub2dd 8456 Subtraction of both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( C  -  B )  < 
 ( C  -  A ) )
 
Theoremleadd1dd 8457 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  +  C )  <_  ( B  +  C ) )
 
Theoremleadd2dd 8458 Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  +  A )  <_  ( C  +  B ) )
 
Theoremlesub1dd 8459 Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  -  C )  <_  ( B  -  C ) )
 
Theoremlesub2dd 8460 Subtraction of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  -  B )  <_  ( C  -  A ) )
 
Theoremle2addd 8461 Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A  +  B )  <_  ( C  +  D ) )
 
Theoremle2subd 8462 Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B 
 <_  D )   =>    |-  ( ph  ->  ( A  -  D )  <_  ( C  -  B ) )
 
Theoremltleaddd 8463 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <_  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremleltaddd 8464 Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A 
 <_  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremlt2addd 8465 Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  +  B )  <  ( C  +  D ) )
 
Theoremlt2subd 8466 Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  A  <  C )   &    |-  ( ph  ->  B  <  D )   =>    |-  ( ph  ->  ( A  -  D )  < 
 ( C  -  B ) )
 
Theorempossumd 8467 Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( 0  <  ( A  +  B )  <->  -u B  <  A ) )
 
Theoremsublt0d 8468 When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( A  -  B )  <  0  <->  A  <  B ) )
 
Theoremltaddsublt 8469 Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  C  <->  ( ( A  +  B )  -  C )  <  A ) )
 
Theorem1le1 8470  1  <_  1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
 |-  1  <_  1
 
Theoremgt0add 8471 A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  ( A  +  B ) ) 
 ->  ( 0  <  A  \/  0  <  B ) )
 
4.3.5  Real Apartness
 
Syntaxcreap 8472 Class of real apartness relation.
 class #
 
Definitiondf-reap 8473* Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although # is an apartness relation on the reals (see df-ap 8480 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, # and # agree (apreap 8485). (Contributed by Jim Kingdon, 26-Jan-2020.)
 |- #  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  ( x  <  y  \/  y  <  x ) ) }
 
Theoremreapval 8474 Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8486 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremreapirr 8475 Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8503 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A #  A )
 
Theoremrecexre 8476* Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremreapti 8477 Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8520. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  -.  A #  B ) )
 
Theoremrecexgt0 8478* Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. x  e.  RR  ( 0  <  x  /\  ( A  x.  x )  =  1 )
 )
 
4.3.6  Complex Apartness
 
Syntaxcap 8479 Class of complex apartness relation.
 class #
 
Definitiondf-ap 8480* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8575 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8503), symmetry (apsym 8504), and cotransitivity (apcotr 8505). Apartness implies negated equality, as seen at apne 8521, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8520).

(Contributed by Jim Kingdon, 26-Jan-2020.)

 |- # 
 =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e. 
 RR  E. t  e.  RR  E. u  e.  RR  (
 ( x  =  ( r  +  ( _i 
 x.  s ) ) 
 /\  y  =  ( t  +  ( _i 
 x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) }
 
Theoremixi 8481  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( _i  x.  _i )  =  -u 1
 
Theoreminelr 8482 The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
 |- 
 -.  _i  e.  RR
 
Theoremrimul 8483 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  ->  A  =  0 )
 
Theoremrereim 8484 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  ( B  =  A  /\  C  =  0 )
 )
 
Theoremapreap 8485 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B ) )
 
Theoremreaplt 8486 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremreapltxor 8487 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/_  B  <  A ) ) )
 
Theorem1ap0 8488 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  1 #  0
 
Theoremltmul1a 8489 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  <  B )  ->  ( A  x.  C )  <  ( B  x.  C ) )
 
Theoremltmul1 8490 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremlemul1 8491 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremreapmul1lem 8492 Lemma for reapmul1 8493. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A #  B 
 <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapmul1 8493 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8684. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) ) 
 ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapadd1 8494 Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  +  C ) #  ( B  +  C ) ) )
 
Theoremreapneg 8495 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  -u A #  -u B ) )
 
Theoremreapcotr 8496 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C ) ) )
 
Theoremremulext1 8497 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
 
Theoremremulext2 8498 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( C  x.  A ) #  ( C  x.  B )  ->  A #  B ) )
 
Theoremapsqgt0 8499 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  0  <  ( A  x.  A ) )
 
Theoremcru 8500 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >