HomeHome Intuitionistic Logic Explorer
Theorem List (p. 85 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8401-8500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaprcl 8401 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC )
 )
 
Theoremapsscn 8402* The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |- 
 { x  e.  A  |  x #  B }  C_ 
 CC
 
Theoremlt0ap0 8403 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A #  0
 )
 
Theoremlt0ap0d 8404 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A #  0 )
 
4.3.7  Reciprocals
 
Theoremrecextlem1 8405 Lemma for recexap 8407. (Contributed by Eric Schmidt, 23-May-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B ) ) )
 
Theoremrecexaplem2 8406 Lemma for recexap 8407. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  (
 ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
 
Theoremrecexap 8407* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  E. x  e.  CC  ( A  x.  x )  =  1 )
 
Theoremmulap0 8408 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0b 8409 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0
 ) 
 <->  ( A  x.  B ) #  0 ) )
 
Theoremmulap0i 8410 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( A  x.  B ) #  0
 
Theoremmulap0bd 8411 The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <->  ( A  x.  B ) #  0 )
 )
 
Theoremmulap0d 8412 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0bad 8413 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8412 and consequence of mulap0bd 8411. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  A #  0 )
 
Theoremmulap0bbd 8414 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8412 and consequence of mulap0bd 8411. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  B #  0 )
 
Theoremmulcanapd 8415 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2d 8416 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapad 8417 Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 8415. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( C  x.  A )  =  ( C  x.  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap2ad 8418 Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 8416. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( A  x.  C )  =  ( B  x.  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap 8419 Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2 8420 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapi 8421 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B )
 
Theoremmuleqadd 8422 Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B ) 
 <->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1 ) )
 
Theoremreceuap 8423* Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
 
Theoremmul0eqap 8424 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   &    |-  ( ph  ->  ( A  x.  B )  =  0
 )   =>    |-  ( ph  ->  ( A  =  0  \/  B  =  0 )
 )
 
4.3.8  Division
 
Syntaxcdiv 8425 Extend class notation to include division.
 class  /
 
Definitiondf-div 8426* Define division. Theorem divmulap 8428 relates it to multiplication, and divclap 8431 and redivclap 8484 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divvalap 8427 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
 |- 
 /  =  ( x  e.  CC ,  y  e.  ( CC  \  {
 0 } )  |->  (
 iota_ z  e.  CC  ( y  x.  z
 )  =  x ) )
 
Theoremdivvalap 8427* Value of division: the (unique) element  x such that  ( B  x.  x )  =  A. This is meaningful only when  B is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e. 
 CC  ( B  x.  x )  =  A ) )
 
Theoremdivmulap 8428 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  ( C  x.  B )  =  A ) )
 
Theoremdivmulap2 8429 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( C  x.  B ) ) )
 
Theoremdivmulap3 8430 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( B  x.  C ) ) )
 
Theoremdivclap 8431 Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
 
Theoremrecclap 8432 Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A )  e.  CC )
 
Theoremdivcanap2 8433 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  /  B ) )  =  A )
 
Theoremdivcanap1 8434 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  x.  B )  =  A )
 
Theoremdiveqap0 8435 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  =  0  <->  A  =  0 ) )
 
Theoremdivap0b 8436 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A #  0  <->  ( A  /  B ) #  0 )
 )
 
Theoremdivap0 8437 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  /  B ) #  0 )
 
Theoremrecap0 8438 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A ) #  0 )
 
Theoremrecidap 8439 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A  x.  (
 1  /  A )
 )  =  1 )
 
Theoremrecidap2 8440 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( ( 1  /  A )  x.  A )  =  1 )
 
Theoremdivrecap 8441 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  ( 1  /  B ) ) )
 
Theoremdivrecap2 8442 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( ( 1 
 /  B )  x.  A ) )
 
Theoremdivassap 8443 An associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  B )  /  C )  =  ( A  x.  ( B  /  C ) ) )
 
Theoremdiv23ap 8444 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  B )  /  C )  =  ( ( A 
 /  C )  x.  B ) )
 
Theoremdiv32ap 8445 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  C  e.  CC )  ->  ( ( A 
 /  B )  x.  C )  =  ( A  x.  ( C 
 /  B ) ) )
 
Theoremdiv13ap 8446 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  C  e.  CC )  ->  ( ( A 
 /  B )  x.  C )  =  ( ( C  /  B )  x.  A ) )
 
Theoremdiv12ap 8447 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( A  x.  ( B  /  C ) )  =  ( B  x.  ( A  /  C ) ) )
 
Theoremdivmulassap 8448 An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  ( B  /  D ) )  x.  C )  =  ( ( A  x.  B )  x.  ( C  /  D ) ) )
 
Theoremdivmulasscomap 8449 An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( A  x.  ( B  /  D ) )  x.  C )  =  ( B  x.  ( ( A  x.  C )  /  D ) ) )
 
Theoremdivdirap 8450 Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  +  B )  /  C )  =  ( ( A 
 /  C )  +  ( B  /  C ) ) )
 
Theoremdivcanap3 8451 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( B  x.  A )  /  B )  =  A )
 
Theoremdivcanap4 8452 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  x.  B )  /  B )  =  A )
 
Theoremdiv11ap 8453 One-to-one relationship for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  ( B  /  C )  <->  A  =  B ) )
 
Theoremdividap 8454 A number divided by itself is one. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( A  /  A )  =  1 )
 
Theoremdiv0ap 8455 Division into zero is zero. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 0  /  A )  =  0 )
 
Theoremdiv1 8456 A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  /  1
 )  =  A )
 
Theorem1div1e1 8457 1 divided by 1 is 1 (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
 |-  ( 1  /  1
 )  =  1
 
Theoremdiveqap1 8458 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  =  1  <->  A  =  B ) )
 
Theoremdivnegap 8459 Move negative sign inside of a division. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( A  /  B )  =  ( -u A  /  B ) )
 
Theoremmuldivdirap 8460 Distribution of division over addition with a multiplication. (Contributed by Jim Kingdon, 11-Nov-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( ( C  x.  A )  +  B )  /  C )  =  ( A  +  ( B  /  C ) ) )
 
Theoremdivsubdirap 8461 Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  -  B )  /  C )  =  ( ( A 
 /  C )  -  ( B  /  C ) ) )
 
Theoremrecrecap 8462 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  (
 1  /  A )
 )  =  A )
 
Theoremrec11ap 8463 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  =  (
 1  /  B )  <->  A  =  B ) )
 
Theoremrec11rap 8464 Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  =  B  <->  ( 1  /  B )  =  A ) )
 
Theoremdivmuldivap 8465 Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( A  x.  B )  /  ( C  x.  D ) ) )
 
Theoremdivdivdivap 8466 Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 ) 
 /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  (
 ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C ) ) )
 
Theoremdivcanap5 8467 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A )  /  ( C  x.  B ) )  =  ( A  /  B ) )
 
Theoremdivmul13ap 8468 Swap the denominators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( B  /  C )  x.  ( A  /  D ) ) )
 
Theoremdivmul24ap 8469 Swap the numerators in the product of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D ) )  =  (
 ( A  /  D )  x.  ( B  /  C ) ) )
 
Theoremdivmuleqap 8470 Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D ) 
 <->  ( A  x.  D )  =  ( B  x.  C ) ) )
 
Theoremrecdivap 8471 The reciprocal of a ratio. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( 1  /  ( A  /  B ) )  =  ( B  /  A ) )
 
Theoremdivcanap6 8472 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( A  /  B )  x.  ( B  /  A ) )  =  1 )
 
Theoremdivdiv32ap 8473 Swap denominators in a division. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  B )  /  C )  =  (
 ( A  /  C )  /  B ) )
 
Theoremdivcanap7 8474 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  C )  /  ( B  /  C ) )  =  ( A 
 /  B ) )
 
Theoremdmdcanap 8475 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 )  /\  C  e.  CC )  ->  ( ( A  /  B )  x.  ( C  /  A ) )  =  ( C  /  B ) )
 
Theoremdivdivap1 8476 Division into a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( A  /  B )  /  C )  =  ( A  /  ( B  x.  C ) ) )
 
Theoremdivdivap2 8477 Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) 
 /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  /  ( B  /  C ) )  =  (
 ( A  x.  C )  /  B ) )
 
Theoremrecdivap2 8478 Division into a reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( 1  /  A )  /  B )  =  ( 1  /  ( A  x.  B ) ) )
 
Theoremddcanap 8479 Cancellation in a double division. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  /  ( A  /  B ) )  =  B )
 
Theoremdivadddivap 8480 Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D ) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )
 
Theoremdivsubdivap 8481 Subtraction of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
 ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  -  ( B  /  D ) )  =  ( ( ( A  x.  D )  -  ( B  x.  C ) )  /  ( C  x.  D ) ) )
 
Theoremconjmulap 8482 Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( Q  e.  CC  /\  Q #  0 ) )  ->  ( ( ( 1 
 /  P )  +  ( 1  /  Q ) )  =  1  <->  ( ( P  -  1
 )  x.  ( Q  -  1 ) )  =  1 ) )
 
Theoremrerecclap 8483 Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( 1  /  A )  e.  RR )
 
Theoremredivclap 8484 Closure law for division of reals. (Contributed by Jim Kingdon, 26-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  /  B )  e.  RR )
 
Theoremeqneg 8485 A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  =  -u A 
 <->  A  =  0 ) )
 
Theoremeqnegd 8486 A complex number equals its negative iff it is zero. Deduction form of eqneg 8485. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  =  -u A  <->  A  =  0
 ) )
 
Theoremeqnegad 8487 If a complex number equals its own negative, it is zero. One-way deduction form of eqneg 8485. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =  -u A )   =>    |-  ( ph  ->  A  =  0 )
 
Theoremdiv2negap 8488 Quotient of two negatives. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( -u A  /  -u B )  =  ( A  /  B ) )
 
Theoremdivneg2ap 8489 Move negative sign inside of a division. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  -u ( A  /  B )  =  ( A  /  -u B ) )
 
Theoremrecclapzi 8490 Closure law for reciprocal. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  CC   =>    |-  ( A #  0  ->  ( 1  /  A )  e.  CC )
 
Theoremrecap0apzi 8491 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  CC   =>    |-  ( A #  0  ->  ( 1  /  A ) #  0 )
 
Theoremrecidapzi 8492 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  CC   =>    |-  ( A #  0  ->  ( A  x.  (
 1  /  A )
 )  =  1 )
 
Theoremdiv1i 8493 A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.)
 |-  A  e.  CC   =>    |-  ( A  / 
 1 )  =  A
 
Theoremeqnegi 8494 A number equal to its negative is zero. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  =  -u A  <->  A  =  0
 )
 
Theoremrecclapi 8495 Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
 |-  A  e.  CC   &    |-  A #  0   =>    |-  ( 1  /  A )  e.  CC
 
Theoremrecidapi 8496 Multiplication of a number and its reciprocal. (Contributed by NM, 9-Feb-1995.)
 |-  A  e.  CC   &    |-  A #  0   =>    |-  ( A  x.  (
 1  /  A )
 )  =  1
 
Theoremrecrecapi 8497 A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.)
 |-  A  e.  CC   &    |-  A #  0   =>    |-  ( 1  /  (
 1  /  A )
 )  =  A
 
Theoremdividapi 8498 A number divided by itself is one. (Contributed by NM, 9-Feb-1995.)
 |-  A  e.  CC   &    |-  A #  0   =>    |-  ( A  /  A )  =  1
 
Theoremdiv0api 8499 Division into zero is zero. (Contributed by NM, 12-Aug-1999.)
 |-  A  e.  CC   &    |-  A #  0   =>    |-  ( 0  /  A )  =  0
 
Theoremdivclapzi 8500 Closure law for division. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( B #  0  ->  ( A  /  B )  e.  CC )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >