Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltleaddd | Unicode version |
Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | |
ltnegd.2 | |
ltadd1d.3 | |
lt2addd.4 | |
ltleaddd.5 | |
ltleaddd.6 |
Ref | Expression |
---|---|
ltleaddd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltleaddd.5 | . 2 | |
2 | ltleaddd.6 | . 2 | |
3 | leidd.1 | . . 3 | |
4 | ltnegd.2 | . . 3 | |
5 | ltadd1d.3 | . . 3 | |
6 | lt2addd.4 | . . 3 | |
7 | ltleadd 8369 | . . 3 | |
8 | 3, 4, 5, 6, 7 | syl22anc 1235 | . 2 |
9 | 1, 2, 8 | mp2and 431 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2142 class class class wbr 3990 (class class class)co 5857 cr 7777 caddc 7781 clt 7958 cle 7959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-i2m1 7883 ax-0id 7886 ax-rnegex 7887 ax-pre-ltwlin 7891 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-rab 2458 df-v 2733 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-br 3991 df-opab 4052 df-xp 4618 df-cnv 4620 df-iota 5162 df-fv 5208 df-ov 5860 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 |
This theorem is referenced by: lt2addd 8490 trilpolemeq1 14189 |
Copyright terms: Public domain | W3C validator |