ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleaddd Unicode version

Theorem ltleaddd 8440
Description: Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
lt2addd.4  |-  ( ph  ->  D  e.  RR )
ltleaddd.5  |-  ( ph  ->  A  <  C )
ltleaddd.6  |-  ( ph  ->  B  <_  D )
Assertion
Ref Expression
ltleaddd  |-  ( ph  ->  ( A  +  B
)  <  ( C  +  D ) )

Proof of Theorem ltleaddd
StepHypRef Expression
1 ltleaddd.5 . 2  |-  ( ph  ->  A  <  C )
2 ltleaddd.6 . 2  |-  ( ph  ->  B  <_  D )
3 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lt2addd.4 . . 3  |-  ( ph  ->  D  e.  RR )
7 ltleadd 8321 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
83, 4, 5, 6, 7syl22anc 1221 . 2  |-  ( ph  ->  ( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
91, 2, 8mp2and 430 1  |-  ( ph  ->  ( A  +  B
)  <  ( C  +  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   class class class wbr 3965  (class class class)co 5824   RRcr 7731    + caddc 7735    < clt 7912    <_ cle 7913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-i2m1 7837  ax-0id 7840  ax-rnegex 7841  ax-pre-ltwlin 7845  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4592  df-cnv 4594  df-iota 5135  df-fv 5178  df-ov 5827  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918
This theorem is referenced by:  lt2addd  8442  trilpolemeq1  13622
  Copyright terms: Public domain W3C validator