ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2addd Unicode version

Theorem lt2addd 8352
Description: Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
lt2addd.4  |-  ( ph  ->  D  e.  RR )
lt2addd.5  |-  ( ph  ->  A  <  C )
lt2addd.6  |-  ( ph  ->  B  <  D )
Assertion
Ref Expression
lt2addd  |-  ( ph  ->  ( A  +  B
)  <  ( C  +  D ) )

Proof of Theorem lt2addd
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ltadd1d.3 . 2  |-  ( ph  ->  C  e.  RR )
4 lt2addd.4 . 2  |-  ( ph  ->  D  e.  RR )
5 lt2addd.5 . 2  |-  ( ph  ->  A  <  C )
6 lt2addd.6 . . 3  |-  ( ph  ->  B  <  D )
72, 4, 6ltled 7904 . 2  |-  ( ph  ->  B  <_  D )
81, 2, 3, 4, 5, 7ltleaddd 8350 1  |-  ( ph  ->  ( A  +  B
)  <  ( C  +  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1481   class class class wbr 3936  (class class class)co 5781   RRcr 7642    + caddc 7646    < clt 7823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-ltadd 7759
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-xp 4552  df-cnv 4554  df-iota 5095  df-fv 5138  df-ov 5784  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829
This theorem is referenced by:  modaddmodup  10190  modsumfzodifsn  10199  resqrexlemnm  10821  mertenslemi1  11335
  Copyright terms: Public domain W3C validator