![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt2addd | Unicode version |
Description: Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltnegd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltadd1d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lt2addd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lt2addd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lt2addd.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lt2addd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltnegd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltadd1d.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | lt2addd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | lt2addd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lt2addd.6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 2, 4, 6 | ltled 7752 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 3, 4, 5, 7 | ltleaddd 8193 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-i2m1 7600 ax-0id 7603 ax-rnegex 7604 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-cnv 4485 df-iota 5024 df-fv 5067 df-ov 5709 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 |
This theorem is referenced by: modaddmodup 10001 modsumfzodifsn 10010 resqrexlemnm 10630 mertenslemi1 11143 |
Copyright terms: Public domain | W3C validator |