ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleadd Unicode version

Theorem ltleadd 8473
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
Assertion
Ref Expression
ltleadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem ltleadd
StepHypRef Expression
1 ltadd1 8456 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
213com23 1211 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
323expa 1205 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  <->  ( A  +  B )  <  ( C  +  B )
) )
43adantrr 479 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  C  <->  ( A  +  B )  <  ( C  +  B ) ) )
5 leadd2 8458 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR  /\  C  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
653com23 1211 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
763expb 1206 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
87adantll 476 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D ) ) )
94, 8anbi12d 473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  <->  ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
) ) )
10 readdcl 8005 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
1110adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
12 readdcl 8005 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1312ancoms 268 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  +  B
)  e.  RR )
1413ad2ant2lr 510 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
15 readdcl 8005 . . . 4  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  e.  RR )
1615adantl 277 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
17 ltletr 8116 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <  ( C  +  B )  /\  ( C  +  B )  <_  ( C  +  D
) )  ->  ( A  +  B )  <  ( C  +  D
) ) )
1811, 14, 16, 17syl3anc 1249 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
)  ->  ( A  +  B )  <  ( C  +  D )
) )
199, 18sylbid 150 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878    + caddc 7882    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-pre-ltwlin 7992  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  leltadd  8474  addgtge0  8477  ltleaddd  8592
  Copyright terms: Public domain W3C validator