ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleadd Unicode version

Theorem ltleadd 8336
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007.)
Assertion
Ref Expression
ltleadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem ltleadd
StepHypRef Expression
1 ltadd1 8319 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
213com23 1198 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
323expa 1192 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  <->  ( A  +  B )  <  ( C  +  B )
) )
43adantrr 471 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  C  <->  ( A  +  B )  <  ( C  +  B ) ) )
5 leadd2 8321 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR  /\  C  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
653com23 1198 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
763expb 1193 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
87adantll 468 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D ) ) )
94, 8anbi12d 465 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  <->  ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
) ) )
10 readdcl 7871 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
1110adantr 274 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
12 readdcl 7871 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
1312ancoms 266 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  +  B
)  e.  RR )
1413ad2ant2lr 502 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
15 readdcl 7871 . . . 4  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  e.  RR )
1615adantl 275 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
17 ltletr 7980 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <  ( C  +  B )  /\  ( C  +  B )  <_  ( C  +  D
) )  ->  ( A  +  B )  <  ( C  +  D
) ) )
1811, 14, 16, 17syl3anc 1227 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
)  ->  ( A  +  B )  <  ( C  +  D )
) )
199, 18sylbid 149 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <_  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2135   class class class wbr 3977  (class class class)co 5837   RRcr 7744    + caddc 7748    < clt 7925    <_ cle 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-i2m1 7850  ax-0id 7853  ax-rnegex 7854  ax-pre-ltwlin 7858  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2724  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-xp 4605  df-cnv 4607  df-iota 5148  df-fv 5191  df-ov 5840  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931
This theorem is referenced by:  leltadd  8337  addgtge0  8340  ltleaddd  8455
  Copyright terms: Public domain W3C validator