ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletr Unicode version

Theorem ltletr 8197
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )

Proof of Theorem ltletr
StepHypRef Expression
1 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  B  <_  C )
2 simpl2 1004 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  B  e.  RR )
3 simpl3 1005 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  C  e.  RR )
4 lenlt 8183 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
52, 3, 4syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( B  <_  C  <->  -.  C  <  B ) )
61, 5mpbid 147 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  -.  C  <  B )
7 simprl 529 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  A  <  B )
8 axltwlin 8175 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
98adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( A  <  B  ->  ( A  <  C  \/  C  < 
B ) ) )
107, 9mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( A  <  C  \/  C  < 
B ) )
116, 10ecased 1362 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  A  <  C )
1211ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    e. wcel 2178   class class class wbr 4059   RRcr 7959    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  ltletri  8214  ltletrd  8531  ltleadd  8554  nngt0  9096  nnrecgt0  9109  elnnnn0c  9375  elnnz1  9430  zltp1le  9462  uz3m2nn  9729  ledivge1le  9883  addlelt  9925  zltaddlt1le  10164  elfz1b  10247  elfzodifsumelfzo  10367  ssfzo12bi  10391  swrdswrd  11196  swrdccatin1  11216  cos01gt0  12189  oddge22np1  12307  nn0seqcvgd  12478  coprm  12581  logdivlti  15468  gausslemma2dlem1a  15650
  Copyright terms: Public domain W3C validator