ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletr Unicode version

Theorem ltletr 8109
Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
ltletr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )

Proof of Theorem ltletr
StepHypRef Expression
1 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  B  <_  C )
2 simpl2 1003 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  B  e.  RR )
3 simpl3 1004 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  C  e.  RR )
4 lenlt 8095 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
52, 3, 4syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( B  <_  C  <->  -.  C  <  B ) )
61, 5mpbid 147 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  -.  C  <  B )
7 simprl 529 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  A  <  B )
8 axltwlin 8087 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
98adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( A  <  B  ->  ( A  <  C  \/  C  < 
B ) ) )
107, 9mpd 13 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  ( A  <  C  \/  C  < 
B ) )
116, 10ecased 1360 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  B  /\  B  <_  C ) )  ->  A  <  C )
1211ex 115 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2164   class class class wbr 4029   RRcr 7871    < clt 8054    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltwlin 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  ltletri  8126  ltletrd  8442  ltleadd  8465  nngt0  9007  nnrecgt0  9020  elnnnn0c  9285  elnnz1  9340  zltp1le  9371  uz3m2nn  9638  ledivge1le  9792  addlelt  9834  zltaddlt1le  10073  elfz1b  10156  elfzodifsumelfzo  10268  ssfzo12bi  10292  cos01gt0  11906  oddge22np1  12022  nn0seqcvgd  12179  coprm  12282  logdivlti  15016  gausslemma2dlem1a  15174
  Copyright terms: Public domain W3C validator