| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltletr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . . 4
| |
| 2 | simpl2 1025 |
. . . . 5
| |
| 3 | simpl3 1026 |
. . . . 5
| |
| 4 | lenlt 8222 |
. . . . 5
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . 4
|
| 6 | 1, 5 | mpbid 147 |
. . 3
|
| 7 | simprl 529 |
. . . 4
| |
| 8 | axltwlin 8214 |
. . . . 5
| |
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | 7, 9 | mpd 13 |
. . 3
|
| 11 | 6, 10 | ecased 1383 |
. 2
|
| 12 | 11 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: ltletri 8253 ltletrd 8570 ltleadd 8593 nngt0 9135 nnrecgt0 9148 elnnnn0c 9414 elnnz1 9469 zltp1le 9501 uz3m2nn 9768 ledivge1le 9922 addlelt 9964 zltaddlt1le 10203 elfz1b 10286 elfzodifsumelfzo 10407 ssfzo12bi 10431 swrdswrd 11237 swrdccatin1 11257 cos01gt0 12274 oddge22np1 12392 nn0seqcvgd 12563 coprm 12666 logdivlti 15555 gausslemma2dlem1a 15737 |
| Copyright terms: Public domain | W3C validator |