| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltletr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . . 4
| |
| 2 | simpl2 1004 |
. . . . 5
| |
| 3 | simpl3 1005 |
. . . . 5
| |
| 4 | lenlt 8148 |
. . . . 5
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . 4
|
| 6 | 1, 5 | mpbid 147 |
. . 3
|
| 7 | simprl 529 |
. . . 4
| |
| 8 | axltwlin 8140 |
. . . . 5
| |
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | 7, 9 | mpd 13 |
. . 3
|
| 11 | 6, 10 | ecased 1362 |
. 2
|
| 12 | 11 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltwlin 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: ltletri 8179 ltletrd 8496 ltleadd 8519 nngt0 9061 nnrecgt0 9074 elnnnn0c 9340 elnnz1 9395 zltp1le 9427 uz3m2nn 9694 ledivge1le 9848 addlelt 9890 zltaddlt1le 10129 elfz1b 10212 elfzodifsumelfzo 10330 ssfzo12bi 10354 cos01gt0 12074 oddge22np1 12192 nn0seqcvgd 12363 coprm 12466 logdivlti 15353 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |