| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletr | Unicode version | ||
| Description: Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.) |
| Ref | Expression |
|---|---|
| ltletr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 |
. . . 4
| |
| 2 | simpl2 1004 |
. . . . 5
| |
| 3 | simpl3 1005 |
. . . . 5
| |
| 4 | lenlt 8183 |
. . . . 5
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . 4
|
| 6 | 1, 5 | mpbid 147 |
. . 3
|
| 7 | simprl 529 |
. . . 4
| |
| 8 | axltwlin 8175 |
. . . . 5
| |
| 9 | 8 | adantr 276 |
. . . 4
|
| 10 | 7, 9 | mpd 13 |
. . 3
|
| 11 | 6, 10 | ecased 1362 |
. 2
|
| 12 | 11 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: ltletri 8214 ltletrd 8531 ltleadd 8554 nngt0 9096 nnrecgt0 9109 elnnnn0c 9375 elnnz1 9430 zltp1le 9462 uz3m2nn 9729 ledivge1le 9883 addlelt 9925 zltaddlt1le 10164 elfz1b 10247 elfzodifsumelfzo 10367 ssfzo12bi 10391 swrdswrd 11196 swrdccatin1 11216 cos01gt0 12189 oddge22np1 12307 nn0seqcvgd 12478 coprm 12581 logdivlti 15468 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |