ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmlrid Unicode version

Theorem mgmlrid 13211
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
mgmlrid  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x   
x, X
Allowed substitution hints:    ph( x, e)    X( e)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2205 . . . 4  |-  .0.  =  .0.
2 ismgmid.b . . . . 5  |-  B  =  ( Base `  G
)
3 ismgmid.o . . . . 5  |-  .0.  =  ( 0g `  G )
4 ismgmid.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
62, 3, 4, 5ismgmid 13209 . . . 4  |-  ( ph  ->  ( (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )  <->  .0.  =  .0.  ) )
71, 6mpbiri 168 . . 3  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
87simprd 114 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
9 oveq2 5952 . . . . 5  |-  ( x  =  X  ->  (  .0.  .+  x )  =  (  .0.  .+  X
) )
10 id 19 . . . . 5  |-  ( x  =  X  ->  x  =  X )
119, 10eqeq12d 2220 . . . 4  |-  ( x  =  X  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  X )  =  X ) )
12 oveq1 5951 . . . . 5  |-  ( x  =  X  ->  (
x  .+  .0.  )  =  ( X  .+  .0.  ) )
1312, 10eqeq12d 2220 . . . 4  |-  ( x  =  X  ->  (
( x  .+  .0.  )  =  x  <->  ( X  .+  .0.  )  =  X ) )
1411, 13anbi12d 473 . . 3  |-  ( x  =  X  ->  (
( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  <->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X
) ) )
1514rspccva 2876 . 2  |-  ( ( A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
168, 15sylan 283 1  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-ndx 12835  df-slot 12836  df-base 12838  df-0g 13090
This theorem is referenced by:  mndlrid  13266
  Copyright terms: Public domain W3C validator