ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmlrid Unicode version

Theorem mgmlrid 13407
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
mgmlrid  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x   
x, X
Allowed substitution hints:    ph( x, e)    X( e)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2229 . . . 4  |-  .0.  =  .0.
2 ismgmid.b . . . . 5  |-  B  =  ( Base `  G
)
3 ismgmid.o . . . . 5  |-  .0.  =  ( 0g `  G )
4 ismgmid.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
62, 3, 4, 5ismgmid 13405 . . . 4  |-  ( ph  ->  ( (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )  <->  .0.  =  .0.  ) )
71, 6mpbiri 168 . . 3  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
87simprd 114 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
9 oveq2 6008 . . . . 5  |-  ( x  =  X  ->  (  .0.  .+  x )  =  (  .0.  .+  X
) )
10 id 19 . . . . 5  |-  ( x  =  X  ->  x  =  X )
119, 10eqeq12d 2244 . . . 4  |-  ( x  =  X  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  X )  =  X ) )
12 oveq1 6007 . . . . 5  |-  ( x  =  X  ->  (
x  .+  .0.  )  =  ( X  .+  .0.  ) )
1312, 10eqeq12d 2244 . . . 4  |-  ( x  =  X  ->  (
( x  .+  .0.  )  =  x  <->  ( X  .+  .0.  )  =  X ) )
1411, 13anbi12d 473 . . 3  |-  ( x  =  X  ->  (
( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  <->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X
) ) )
1514rspccva 2906 . 2  |-  ( ( A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
168, 15sylan 283 1  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286
This theorem is referenced by:  mndlrid  13462
  Copyright terms: Public domain W3C validator