ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmlrid Unicode version

Theorem mgmlrid 13022
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b  |-  B  =  ( Base `  G
)
ismgmid.o  |-  .0.  =  ( 0g `  G )
ismgmid.p  |-  .+  =  ( +g  `  G )
mgmidcl.e  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
Assertion
Ref Expression
mgmlrid  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Distinct variable groups:    x, e,  .+    .0. , e, x    B, e, x    e, G, x   
x, X
Allowed substitution hints:    ph( x, e)    X( e)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2196 . . . 4  |-  .0.  =  .0.
2 ismgmid.b . . . . 5  |-  B  =  ( Base `  G
)
3 ismgmid.o . . . . 5  |-  .0.  =  ( 0g `  G )
4 ismgmid.p . . . . 5  |-  .+  =  ( +g  `  G )
5 mgmidcl.e . . . . 5  |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) )
62, 3, 4, 5ismgmid 13020 . . . 4  |-  ( ph  ->  ( (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )  <->  .0.  =  .0.  ) )
71, 6mpbiri 168 . . 3  |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) ) )
87simprd 114 . 2  |-  ( ph  ->  A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
) )
9 oveq2 5930 . . . . 5  |-  ( x  =  X  ->  (  .0.  .+  x )  =  (  .0.  .+  X
) )
10 id 19 . . . . 5  |-  ( x  =  X  ->  x  =  X )
119, 10eqeq12d 2211 . . . 4  |-  ( x  =  X  ->  (
(  .0.  .+  x
)  =  x  <->  (  .0.  .+  X )  =  X ) )
12 oveq1 5929 . . . . 5  |-  ( x  =  X  ->  (
x  .+  .0.  )  =  ( X  .+  .0.  ) )
1312, 10eqeq12d 2211 . . . 4  |-  ( x  =  X  ->  (
( x  .+  .0.  )  =  x  <->  ( X  .+  .0.  )  =  X ) )
1411, 13anbi12d 473 . . 3  |-  ( x  =  X  ->  (
( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  <->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X
) ) )
1514rspccva 2867 . 2  |-  ( ( A. x  e.  B  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x
)  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
168, 15sylan 283 1  |-  ( (
ph  /\  X  e.  B )  ->  (
(  .0.  .+  X
)  =  X  /\  ( X  .+  .0.  )  =  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929
This theorem is referenced by:  mndlrid  13075
  Copyright terms: Public domain W3C validator