| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmlrid | GIF version | ||
| Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
| ismgmid.o | ⊢ 0 = (0g‘𝐺) |
| ismgmid.p | ⊢ + = (+g‘𝐺) |
| mgmidcl.e | ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| Ref | Expression |
|---|---|
| mgmlrid | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . . 4 ⊢ 0 = 0 | |
| 2 | ismgmid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | ismgmid.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | ismgmid.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 5 | mgmidcl.e | . . . . 5 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) | |
| 6 | 2, 3, 4, 5 | ismgmid 13396 | . . . 4 ⊢ (𝜑 → (( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 )) |
| 7 | 1, 6 | mpbiri 168 | . . 3 ⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |
| 8 | 7 | simprd 114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 9 | oveq2 6002 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋)) | |
| 10 | id 19 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 11 | 9, 10 | eqeq12d 2244 | . . . 4 ⊢ (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋)) |
| 12 | oveq1 6001 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 )) | |
| 13 | 12, 10 | eqeq12d 2244 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋)) |
| 14 | 11, 13 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))) |
| 15 | 14 | rspccva 2906 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| 16 | 8, 15 | sylan 283 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 0gc0g 13275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-ndx 13021 df-slot 13022 df-base 13024 df-0g 13277 |
| This theorem is referenced by: mndlrid 13453 |
| Copyright terms: Public domain | W3C validator |