ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmlrid GIF version

Theorem mgmlrid 13022
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
mgmidcl.e (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
Assertion
Ref Expression
mgmlrid ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Distinct variable groups:   𝑥,𝑒, +   0 ,𝑒,𝑥   𝐵,𝑒,𝑥   𝑒,𝐺,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑒)   𝑋(𝑒)

Proof of Theorem mgmlrid
StepHypRef Expression
1 eqid 2196 . . . 4 0 = 0
2 ismgmid.b . . . . 5 𝐵 = (Base‘𝐺)
3 ismgmid.o . . . . 5 0 = (0g𝐺)
4 ismgmid.p . . . . 5 + = (+g𝐺)
5 mgmidcl.e . . . . 5 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
62, 3, 4, 5ismgmid 13020 . . . 4 (𝜑 → (( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) ↔ 0 = 0 ))
71, 6mpbiri 168 . . 3 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
87simprd 114 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
9 oveq2 5930 . . . . 5 (𝑥 = 𝑋 → ( 0 + 𝑥) = ( 0 + 𝑋))
10 id 19 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
119, 10eqeq12d 2211 . . . 4 (𝑥 = 𝑋 → (( 0 + 𝑥) = 𝑥 ↔ ( 0 + 𝑋) = 𝑋))
12 oveq1 5929 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 0 ) = (𝑋 + 0 ))
1312, 10eqeq12d 2211 . . . 4 (𝑥 = 𝑋 → ((𝑥 + 0 ) = 𝑥 ↔ (𝑋 + 0 ) = 𝑋))
1411, 13anbi12d 473 . . 3 (𝑥 = 𝑋 → ((( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ↔ (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋)))
1514rspccva 2867 . 2 ((∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥) ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
168, 15sylan 283 1 ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929
This theorem is referenced by:  mndlrid  13075
  Copyright terms: Public domain W3C validator