ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss Unicode version

Theorem neiss 14470
Description: Any neighborhood of a set  S is also a neighborhood of any subset  R  C_  S. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
Assertion
Ref Expression
neiss  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)

Proof of Theorem neiss
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  U. J  =  U. J
21neii1 14467 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
323adant3 1019 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  C_ 
U. J )
4 neii2 14469 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
543adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
6 sstr2 3191 . . . . . 6  |-  ( R 
C_  S  ->  ( S  C_  g  ->  R  C_  g ) )
76anim1d 336 . . . . 5  |-  ( R 
C_  S  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( R  C_  g  /\  g  C_  N
) ) )
87reximdv 2598 . . . 4  |-  ( R 
C_  S  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
983ad2ant3 1022 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
105, 9mpd 13 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) )
11 simp1 999 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  J  e.  Top )
12 simp3 1001 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_  S )
131neiss2 14462 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
14133adant3 1019 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  S  C_ 
U. J )
1512, 14sstrd 3194 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_ 
U. J )
161isnei 14464 . . 3  |-  ( ( J  e.  Top  /\  R  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  R )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
1711, 15, 16syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( N  e.  ( ( nei `  J ) `  R )  <->  ( N  C_ 
U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
183, 10, 17mpbir2and 946 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   E.wrex 2476    C_ wss 3157   U.cuni 3840   ` cfv 5259   Topctop 14317   neicnei 14458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-top 14318  df-nei 14459
This theorem is referenced by:  neipsm  14474  neissex  14485
  Copyright terms: Public domain W3C validator