ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neiss Unicode version

Theorem neiss 12335
Description: Any neighborhood of a set  S is also a neighborhood of any subset  R  C_  S. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
Assertion
Ref Expression
neiss  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)

Proof of Theorem neiss
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4  |-  U. J  =  U. J
21neii1 12332 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  U. J )
323adant3 1001 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  C_ 
U. J )
4 neii2 12334 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
543adant3 1001 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
6 sstr2 3104 . . . . . 6  |-  ( R 
C_  S  ->  ( S  C_  g  ->  R  C_  g ) )
76anim1d 334 . . . . 5  |-  ( R 
C_  S  ->  (
( S  C_  g  /\  g  C_  N )  ->  ( R  C_  g  /\  g  C_  N
) ) )
87reximdv 2533 . . . 4  |-  ( R 
C_  S  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
983ad2ant3 1004 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( E. g  e.  J  ( S  C_  g  /\  g  C_  N )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) )
105, 9mpd 13 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) )
11 simp1 981 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  J  e.  Top )
12 simp3 983 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_  S )
131neiss2 12327 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
14133adant3 1001 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  S  C_ 
U. J )
1512, 14sstrd 3107 . . 3  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  R  C_ 
U. J )
161isnei 12329 . . 3  |-  ( ( J  e.  Top  /\  R  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  R )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
1711, 15, 16syl2anc 408 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  ( N  e.  ( ( nei `  J ) `  R )  <->  ( N  C_ 
U. J  /\  E. g  e.  J  ( R  C_  g  /\  g  C_  N ) ) ) )
183, 10, 17mpbir2and 928 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J
) `  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   E.wrex 2417    C_ wss 3071   U.cuni 3736   ` cfv 5123   Topctop 12180   neicnei 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12181  df-nei 12324
This theorem is referenced by:  neipsm  12339  neissex  12350
  Copyright terms: Public domain W3C validator