ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblpnfps Unicode version

Theorem xblpnfps 13192
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblpnfps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )

Proof of Theorem xblpnfps
StepHypRef Expression
1 pnfxr 7972 . . 3  |- +oo  e.  RR*
2 elblps 13184 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
31, 2mp3an3 1321 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
4 psmetcl 13120 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  ( P D A )  e. 
RR* )
5 psmetge0 13125 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  0  <_  ( P D A ) )
6 ge0nemnf 9781 . . . . . . . 8  |-  ( ( ( P D A )  e.  RR*  /\  0  <_  ( P D A ) )  ->  ( P D A )  =/= -oo )
74, 5, 6syl2anc 409 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  ( P D A )  =/= -oo )
8 nmnfgt 9775 . . . . . . . 8  |-  ( ( P D A )  e.  RR*  ->  ( -oo  <  ( P D A )  <->  ( P D A )  =/= -oo ) )
94, 8syl 14 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  ( -oo  <  ( P D A )  <->  ( P D A )  =/= -oo ) )
107, 9mpbird 166 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  -> -oo  <  ( P D A ) )
1110biantrurd 303 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  (
( P D A )  < +oo  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
12 xrrebnd 9776 . . . . . 6  |-  ( ( P D A )  e.  RR*  ->  ( ( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
134, 12syl 14 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  (
( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
1411, 13bitr4d 190 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  A  e.  X )  ->  (
( P D A )  < +oo  <->  ( P D A )  e.  RR ) )
15143expa 1198 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  A  e.  X )  ->  (
( P D A )  < +oo  <->  ( P D A )  e.  RR ) )
1615pm5.32da 449 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  (
( A  e.  X  /\  ( P D A )  < +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
173, 16bitrd 187 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( A  e.  ( P
( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141    =/= wne 2340   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954    <_ cle 7955  PsMetcpsmet 12773   ballcbl 12776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-2 8937  df-xadd 9730  df-psmet 12781  df-bl 12784
This theorem is referenced by:  xblss2ps  13198
  Copyright terms: Public domain W3C validator