ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblpnf Unicode version

Theorem xblpnf 12997
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblpnf  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )

Proof of Theorem xblpnf
StepHypRef Expression
1 pnfxr 7945 . . 3  |- +oo  e.  RR*
2 elbl 12989 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
31, 2mp3an3 1315 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
4 xmetcl 12950 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( P D A )  e.  RR* )
5 xmetge0 12963 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  0  <_  ( P D A ) )
6 ge0nemnf 9754 . . . . . . . 8  |-  ( ( ( P D A )  e.  RR*  /\  0  <_  ( P D A ) )  ->  ( P D A )  =/= -oo )
74, 5, 6syl2anc 409 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( P D A )  =/= -oo )
8 nmnfgt 9748 . . . . . . . 8  |-  ( ( P D A )  e.  RR*  ->  ( -oo  <  ( P D A )  <->  ( P D A )  =/= -oo ) )
94, 8syl 14 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( -oo  <  ( P D A )  <->  ( P D A )  =/= -oo ) )
107, 9mpbird 166 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  -> -oo  <  ( P D A ) )
1110biantrurd 303 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  < +oo 
<->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
12 xrrebnd 9749 . . . . . 6  |-  ( ( P D A )  e.  RR*  ->  ( ( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
134, 12syl 14 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
1411, 13bitr4d 190 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  < +oo 
<->  ( P D A )  e.  RR ) )
15143expa 1192 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  X )  ->  (
( P D A )  < +oo  <->  ( P D A )  e.  RR ) )
1615pm5.32da 448 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( ( A  e.  X  /\  ( P D A )  < +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
173, 16bitrd 187 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    e. wcel 2135    =/= wne 2334   class class class wbr 3979   ` cfv 5185  (class class class)co 5839   RRcr 7746   0cc0 7747   +oocpnf 7924   -oocmnf 7925   RR*cxr 7926    < clt 7927    <_ cle 7928   *Metcxmet 12578   ballcbl 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-ltadd 7863  ax-pre-mulgt0 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-po 4271  df-iso 4272  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-map 6610  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-2 8910  df-xadd 9703  df-psmet 12585  df-xmet 12586  df-bl 12588
This theorem is referenced by:  blpnf  12998  xmetec  13035
  Copyright terms: Public domain W3C validator