ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0pnfge0 Unicode version

Theorem nn0pnfge0 9948
Description: If a number is a nonnegative integer or positive infinity, it is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
Assertion
Ref Expression
nn0pnfge0  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  0  <_  N )

Proof of Theorem nn0pnfge0
StepHypRef Expression
1 nn0ge0 9355 . 2  |-  ( N  e.  NN0  ->  0  <_  N )
2 0lepnf 9947 . . 3  |-  0  <_ +oo
3 breq2 4063 . . 3  |-  ( N  = +oo  ->  (
0  <_  N  <->  0  <_ +oo ) )
42, 3mpbiri 168 . 2  |-  ( N  = +oo  ->  0  <_  N )
51, 4jaoi 718 1  |-  ( ( N  e.  NN0  \/  N  = +oo )  ->  0  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059   0cc0 7960   +oocpnf 8139    <_ cle 8143   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-inn 9072  df-n0 9331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator