ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq Unicode version

Theorem offeq 6072
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off.2  |-  ( ph  ->  F : A --> S )
off.3  |-  ( ph  ->  G : B --> T )
off.4  |-  ( ph  ->  A  e.  V )
off.5  |-  ( ph  ->  B  e.  W )
off.6  |-  ( A  i^i  B )  =  C
offeq.4  |-  ( ph  ->  H : C --> U )
offeq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  D )
offeq.6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  E )
offeq.7  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x
) )
Assertion
Ref Expression
offeq  |-  ( ph  ->  ( F  oF R G )  =  H )
Distinct variable groups:    y, G, x    ph, x, y    x, S, y    x, T, y   
x, F, y    x, R, y    x, U, y   
x, H    x, G    x, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( y)    D( x, y)    E( x, y)    H( y)    V( x, y)    W( x, y)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
2 off.2 . . . 4  |-  ( ph  ->  F : A --> S )
3 off.3 . . . 4  |-  ( ph  ->  G : B --> T )
4 off.4 . . . 4  |-  ( ph  ->  A  e.  V )
5 off.5 . . . 4  |-  ( ph  ->  B  e.  W )
6 off.6 . . . 4  |-  ( A  i^i  B )  =  C
71, 2, 3, 4, 5, 6off 6071 . . 3  |-  ( ph  ->  ( F  oF R G ) : C --> U )
87ffnd 5346 . 2  |-  ( ph  ->  ( F  oF R G )  Fn  C )
9 offeq.4 . . 3  |-  ( ph  ->  H : C --> U )
109ffnd 5346 . 2  |-  ( ph  ->  H  Fn  C )
112ffnd 5346 . . . 4  |-  ( ph  ->  F  Fn  A )
123ffnd 5346 . . . 4  |-  ( ph  ->  G  Fn  B )
13 offeq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  D )
14 offeq.6 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  E )
15 offeq.7 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x
) )
169ffvelrnda 5629 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( H `  x )  e.  U )
1715, 16eqeltrd 2247 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  e.  U )
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6068 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  oF R G ) `  x )  =  ( D R E ) )
1918, 15eqtrd 2203 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  oF R G ) `  x )  =  ( H `  x ) )
208, 10, 19eqfnfvd 5594 1  |-  ( ph  ->  ( F  oF R G )  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    i^i cin 3120   -->wf 5192   ` cfv 5196  (class class class)co 5851    oFcof 6057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-of 6059
This theorem is referenced by:  dviaddf  13428
  Copyright terms: Public domain W3C validator