ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq Unicode version

Theorem offeq 6149
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off.2  |-  ( ph  ->  F : A --> S )
off.3  |-  ( ph  ->  G : B --> T )
off.4  |-  ( ph  ->  A  e.  V )
off.5  |-  ( ph  ->  B  e.  W )
off.6  |-  ( A  i^i  B )  =  C
offeq.4  |-  ( ph  ->  H : C --> U )
offeq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  D )
offeq.6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  E )
offeq.7  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x
) )
Assertion
Ref Expression
offeq  |-  ( ph  ->  ( F  oF R G )  =  H )
Distinct variable groups:    y, G, x    ph, x, y    x, S, y    x, T, y   
x, F, y    x, R, y    x, U, y   
x, H    x, G    x, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( y)    D( x, y)    E( x, y)    H( y)    V( x, y)    W( x, y)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
2 off.2 . . . 4  |-  ( ph  ->  F : A --> S )
3 off.3 . . . 4  |-  ( ph  ->  G : B --> T )
4 off.4 . . . 4  |-  ( ph  ->  A  e.  V )
5 off.5 . . . 4  |-  ( ph  ->  B  e.  W )
6 off.6 . . . 4  |-  ( A  i^i  B )  =  C
71, 2, 3, 4, 5, 6off 6148 . . 3  |-  ( ph  ->  ( F  oF R G ) : C --> U )
87ffnd 5408 . 2  |-  ( ph  ->  ( F  oF R G )  Fn  C )
9 offeq.4 . . 3  |-  ( ph  ->  H : C --> U )
109ffnd 5408 . 2  |-  ( ph  ->  H  Fn  C )
112ffnd 5408 . . . 4  |-  ( ph  ->  F  Fn  A )
123ffnd 5408 . . . 4  |-  ( ph  ->  G  Fn  B )
13 offeq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  D )
14 offeq.6 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  E )
15 offeq.7 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x
) )
169ffvelcdmda 5697 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  ( H `  x )  e.  U )
1715, 16eqeltrd 2273 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  ( D R E )  e.  U )
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6145 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  oF R G ) `  x )  =  ( D R E ) )
1918, 15eqtrd 2229 . 2  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  oF R G ) `  x )  =  ( H `  x ) )
208, 10, 19eqfnfvd 5662 1  |-  ( ph  ->  ( F  oF R G )  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    i^i cin 3156   -->wf 5254   ` cfv 5258  (class class class)co 5922    oFcof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by:  ofnegsub  8989  dviaddf  14941
  Copyright terms: Public domain W3C validator