Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > offeq | Unicode version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
Ref | Expression |
---|---|
off.1 | |
off.2 | |
off.3 | |
off.4 | |
off.5 | |
off.6 | |
offeq.4 | |
offeq.5 | |
offeq.6 | |
offeq.7 |
Ref | Expression |
---|---|
offeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.1 | . . . 4 | |
2 | off.2 | . . . 4 | |
3 | off.3 | . . . 4 | |
4 | off.4 | . . . 4 | |
5 | off.5 | . . . 4 | |
6 | off.6 | . . . 4 | |
7 | 1, 2, 3, 4, 5, 6 | off 6071 | . . 3 |
8 | 7 | ffnd 5346 | . 2 |
9 | offeq.4 | . . 3 | |
10 | 9 | ffnd 5346 | . 2 |
11 | 2 | ffnd 5346 | . . . 4 |
12 | 3 | ffnd 5346 | . . . 4 |
13 | offeq.5 | . . . 4 | |
14 | offeq.6 | . . . 4 | |
15 | offeq.7 | . . . . 5 | |
16 | 9 | ffvelrnda 5629 | . . . . 5 |
17 | 15, 16 | eqeltrd 2247 | . . . 4 |
18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6068 | . . 3 |
19 | 18, 15 | eqtrd 2203 | . 2 |
20 | 8, 10, 19 | eqfnfvd 5594 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cin 3120 wf 5192 cfv 5196 (class class class)co 5851 cof 6057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-of 6059 |
This theorem is referenced by: dviaddf 13428 |
Copyright terms: Public domain | W3C validator |