Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > offeq | GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
offeq.4 | ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) |
offeq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) |
offeq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) |
offeq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offeq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
2 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | off.6 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
7 | 1, 2, 3, 4, 5, 6 | off 6034 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
8 | 7 | ffnd 5313 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) Fn 𝐶) |
9 | offeq.4 | . . 3 ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) | |
10 | 9 | ffnd 5313 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐶) |
11 | 2 | ffnd 5313 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
12 | 3 | ffnd 5313 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
13 | offeq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) | |
14 | offeq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) | |
15 | offeq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) | |
16 | 9 | ffvelrnda 5595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝑈) |
17 | 15, 16 | eqeltrd 2231 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) ∈ 𝑈) |
18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6031 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸)) |
19 | 18, 15 | eqtrd 2187 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
20 | 8, 10, 19 | eqfnfvd 5561 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 ∩ cin 3097 ⟶wf 5159 ‘cfv 5163 (class class class)co 5814 ∘𝑓 cof 6020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-of 6022 |
This theorem is referenced by: dviaddf 13016 |
Copyright terms: Public domain | W3C validator |