| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offeq | GIF version | ||
| Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| offeq.4 | ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) |
| offeq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) |
| offeq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) |
| offeq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) |
| Ref | Expression |
|---|---|
| offeq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 2 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | off.6 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 7 | 1, 2, 3, 4, 5, 6 | off 6148 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
| 8 | 7 | ffnd 5408 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) Fn 𝐶) |
| 9 | offeq.4 | . . 3 ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) | |
| 10 | 9 | ffnd 5408 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐶) |
| 11 | 2 | ffnd 5408 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 12 | 3 | ffnd 5408 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 13 | offeq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) | |
| 14 | offeq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) | |
| 15 | offeq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) | |
| 16 | 9 | ffvelcdmda 5697 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝑈) |
| 17 | 15, 16 | eqeltrd 2273 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) ∈ 𝑈) |
| 18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6145 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸)) |
| 19 | 18, 15 | eqtrd 2229 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 20 | 8, 10, 19 | eqfnfvd 5662 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∩ cin 3156 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ∘𝑓 cof 6133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 |
| This theorem is referenced by: ofnegsub 8989 dviaddf 14941 |
| Copyright terms: Public domain | W3C validator |