ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq GIF version

Theorem offeq 6063
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
offeq.4 (𝜑𝐻:𝐶𝑈)
offeq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
offeq.6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
offeq.7 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
Assertion
Ref Expression
offeq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑦,𝐺,𝑥   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝐻   𝑥,𝐺   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
4 off.4 . . . 4 (𝜑𝐴𝑉)
5 off.5 . . . 4 (𝜑𝐵𝑊)
6 off.6 . . . 4 (𝐴𝐵) = 𝐶
71, 2, 3, 4, 5, 6off 6062 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
87ffnd 5338 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐶)
9 offeq.4 . . 3 (𝜑𝐻:𝐶𝑈)
109ffnd 5338 . 2 (𝜑𝐻 Fn 𝐶)
112ffnd 5338 . . . 4 (𝜑𝐹 Fn 𝐴)
123ffnd 5338 . . . 4 (𝜑𝐺 Fn 𝐵)
13 offeq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
14 offeq.6 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
15 offeq.7 . . . . 5 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
169ffvelrnda 5620 . . . . 5 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝑈)
1715, 16eqeltrd 2243 . . . 4 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) ∈ 𝑈)
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6059 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸))
1918, 15eqtrd 2198 . 2 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐻𝑥))
208, 10, 19eqfnfvd 5586 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cin 3115  wf 5184  cfv 5188  (class class class)co 5842  𝑓 cof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  dviaddf  13309
  Copyright terms: Public domain W3C validator