![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offeq | GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
offeq.4 | ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) |
offeq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) |
offeq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) |
offeq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offeq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
2 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | off.6 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
7 | 1, 2, 3, 4, 5, 6 | off 6113 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
8 | 7 | ffnd 5381 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) Fn 𝐶) |
9 | offeq.4 | . . 3 ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) | |
10 | 9 | ffnd 5381 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐶) |
11 | 2 | ffnd 5381 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
12 | 3 | ffnd 5381 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
13 | offeq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) | |
14 | offeq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) | |
15 | offeq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) | |
16 | 9 | ffvelcdmda 5667 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝑈) |
17 | 15, 16 | eqeltrd 2266 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) ∈ 𝑈) |
18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6110 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸)) |
19 | 18, 15 | eqtrd 2222 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
20 | 8, 10, 19 | eqfnfvd 5632 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∩ cin 3143 ⟶wf 5227 ‘cfv 5231 (class class class)co 5891 ∘𝑓 cof 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-of 6101 |
This theorem is referenced by: dviaddf 14566 |
Copyright terms: Public domain | W3C validator |