![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offeq | GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
offeq.4 | ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) |
offeq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) |
offeq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) |
offeq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offeq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
2 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | off.6 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
7 | 1, 2, 3, 4, 5, 6 | off 6145 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
8 | 7 | ffnd 5405 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) Fn 𝐶) |
9 | offeq.4 | . . 3 ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) | |
10 | 9 | ffnd 5405 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐶) |
11 | 2 | ffnd 5405 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
12 | 3 | ffnd 5405 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
13 | offeq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) | |
14 | offeq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) | |
15 | offeq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) | |
16 | 9 | ffvelcdmda 5694 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝑈) |
17 | 15, 16 | eqeltrd 2270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) ∈ 𝑈) |
18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6142 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸)) |
19 | 18, 15 | eqtrd 2226 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
20 | 8, 10, 19 | eqfnfvd 5659 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∩ cin 3153 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ∘𝑓 cof 6130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 |
This theorem is referenced by: ofnegsub 8983 dviaddf 14884 |
Copyright terms: Public domain | W3C validator |