![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offeq | GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
offeq.4 | ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) |
offeq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) |
offeq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) |
offeq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offeq | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
2 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | off.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | off.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | off.6 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
7 | 1, 2, 3, 4, 5, 6 | off 6097 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
8 | 7 | ffnd 5368 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) Fn 𝐶) |
9 | offeq.4 | . . 3 ⊢ (𝜑 → 𝐻:𝐶⟶𝑈) | |
10 | 9 | ffnd 5368 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐶) |
11 | 2 | ffnd 5368 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
12 | 3 | ffnd 5368 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
13 | offeq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐷) | |
14 | offeq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐸) | |
15 | offeq.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) = (𝐻‘𝑥)) | |
16 | 9 | ffvelcdmda 5653 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ 𝑈) |
17 | 15, 16 | eqeltrd 2254 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐷𝑅𝐸) ∈ 𝑈) |
18 | 11, 12, 4, 5, 6, 13, 14, 17 | ofvalg 6094 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸)) |
19 | 18, 15 | eqtrd 2210 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝐹 ∘𝑓 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
20 | 8, 10, 19 | eqfnfvd 5618 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = 𝐻) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∩ cin 3130 ⟶wf 5214 ‘cfv 5218 (class class class)co 5877 ∘𝑓 cof 6083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-of 6085 |
This theorem is referenced by: dviaddf 14254 |
Copyright terms: Public domain | W3C validator |