ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq GIF version

Theorem offeq 6074
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
offeq.4 (𝜑𝐻:𝐶𝑈)
offeq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
offeq.6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
offeq.7 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
Assertion
Ref Expression
offeq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑦,𝐺,𝑥   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝐻   𝑥,𝐺   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
4 off.4 . . . 4 (𝜑𝐴𝑉)
5 off.5 . . . 4 (𝜑𝐵𝑊)
6 off.6 . . . 4 (𝐴𝐵) = 𝐶
71, 2, 3, 4, 5, 6off 6073 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
87ffnd 5348 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐶)
9 offeq.4 . . 3 (𝜑𝐻:𝐶𝑈)
109ffnd 5348 . 2 (𝜑𝐻 Fn 𝐶)
112ffnd 5348 . . . 4 (𝜑𝐹 Fn 𝐴)
123ffnd 5348 . . . 4 (𝜑𝐺 Fn 𝐵)
13 offeq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
14 offeq.6 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
15 offeq.7 . . . . 5 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
169ffvelrnda 5631 . . . . 5 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝑈)
1715, 16eqeltrd 2247 . . . 4 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) ∈ 𝑈)
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6070 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸))
1918, 15eqtrd 2203 . 2 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐻𝑥))
208, 10, 19eqfnfvd 5596 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cin 3120  wf 5194  cfv 5198  (class class class)co 5853  𝑓 cof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by:  dviaddf  13463
  Copyright terms: Public domain W3C validator