ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq GIF version

Theorem offeq 6230
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
offeq.4 (𝜑𝐻:𝐶𝑈)
offeq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
offeq.6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
offeq.7 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
Assertion
Ref Expression
offeq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑦,𝐺,𝑥   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝐻   𝑥,𝐺   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
4 off.4 . . . 4 (𝜑𝐴𝑉)
5 off.5 . . . 4 (𝜑𝐵𝑊)
6 off.6 . . . 4 (𝐴𝐵) = 𝐶
71, 2, 3, 4, 5, 6off 6229 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
87ffnd 5473 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐶)
9 offeq.4 . . 3 (𝜑𝐻:𝐶𝑈)
109ffnd 5473 . 2 (𝜑𝐻 Fn 𝐶)
112ffnd 5473 . . . 4 (𝜑𝐹 Fn 𝐴)
123ffnd 5473 . . . 4 (𝜑𝐺 Fn 𝐵)
13 offeq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
14 offeq.6 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
15 offeq.7 . . . . 5 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
169ffvelcdmda 5769 . . . . 5 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝑈)
1715, 16eqeltrd 2306 . . . 4 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) ∈ 𝑈)
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6226 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸))
1918, 15eqtrd 2262 . 2 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐻𝑥))
208, 10, 19eqfnfvd 5734 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cin 3196  wf 5313  cfv 5317  (class class class)co 6000  𝑓 cof 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216
This theorem is referenced by:  ofnegsub  9105  dviaddf  15373
  Copyright terms: Public domain W3C validator