ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offeq GIF version

Theorem offeq 6144
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
offeq.4 (𝜑𝐻:𝐶𝑈)
offeq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
offeq.6 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
offeq.7 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
Assertion
Ref Expression
offeq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑦,𝐺,𝑥   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝐻   𝑥,𝐺   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐻(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem offeq
StepHypRef Expression
1 off.1 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
4 off.4 . . . 4 (𝜑𝐴𝑉)
5 off.5 . . . 4 (𝜑𝐵𝑊)
6 off.6 . . . 4 (𝐴𝐵) = 𝐶
71, 2, 3, 4, 5, 6off 6143 . . 3 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
87ffnd 5404 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐶)
9 offeq.4 . . 3 (𝜑𝐻:𝐶𝑈)
109ffnd 5404 . 2 (𝜑𝐻 Fn 𝐶)
112ffnd 5404 . . . 4 (𝜑𝐹 Fn 𝐴)
123ffnd 5404 . . . 4 (𝜑𝐺 Fn 𝐵)
13 offeq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐷)
14 offeq.6 . . . 4 ((𝜑𝑥𝐵) → (𝐺𝑥) = 𝐸)
15 offeq.7 . . . . 5 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) = (𝐻𝑥))
169ffvelcdmda 5693 . . . . 5 ((𝜑𝑥𝐶) → (𝐻𝑥) ∈ 𝑈)
1715, 16eqeltrd 2270 . . . 4 ((𝜑𝑥𝐶) → (𝐷𝑅𝐸) ∈ 𝑈)
1811, 12, 4, 5, 6, 13, 14, 17ofvalg 6140 . . 3 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐷𝑅𝐸))
1918, 15eqtrd 2226 . 2 ((𝜑𝑥𝐶) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐻𝑥))
208, 10, 19eqfnfvd 5658 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cin 3152  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130
This theorem is referenced by:  ofnegsub  8981  dviaddf  14854
  Copyright terms: Public domain W3C validator