ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd Unicode version

Theorem eqfnfvd 5680
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1  |-  ( ph  ->  F  Fn  A )
eqfnfvd.2  |-  ( ph  ->  G  Fn  A )
eqfnfvd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
eqfnfvd  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
21ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
3 eqfnfvd.1 . . 3  |-  ( ph  ->  F  Fn  A )
4 eqfnfvd.2 . . 3  |-  ( ph  ->  G  Fn  A )
5 eqfnfv 5677 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
72, 6mpbird 167 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484    Fn wfn 5266   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  foeqcnvco  5859  f1eqcocnv  5860  offeq  6172  tfrlem1  6394  frecrdg  6494  updjudhcoinlf  7182  updjudhcoinrg  7183  nnnninfeq  7230  seq3val  10605  seqvalcd  10606  seq3feq2  10621  seq3feq  10625  seqfeq3  10674  ccatlid  11062  ccatrid  11063  ccatass  11064  ccatswrd  11123  swrdccat2  11124  seq3shft  11149  efcvgfsum  11978  nninfctlemfo  12361  xpsfeq  13177  upxp  14744  uptx  14746  dvidlemap  15163  dvidrelem  15164  dvidsslem  15165  dvrecap  15185  peano4nninf  15943  nninfsellemeqinf  15953  nninffeq  15957  refeq  15967
  Copyright terms: Public domain W3C validator