ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd Unicode version

Theorem eqfnfvd 5637
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1  |-  ( ph  ->  F  Fn  A )
eqfnfvd.2  |-  ( ph  ->  G  Fn  A )
eqfnfvd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
eqfnfvd  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
21ralrimiva 2563 . 2  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
3 eqfnfvd.1 . . 3  |-  ( ph  ->  F  Fn  A )
4 eqfnfvd.2 . . 3  |-  ( ph  ->  G  Fn  A )
5 eqfnfv 5634 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
72, 6mpbird 167 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468    Fn wfn 5230   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243
This theorem is referenced by:  foeqcnvco  5812  f1eqcocnv  5813  offeq  6120  tfrlem1  6333  frecrdg  6433  updjudhcoinlf  7109  updjudhcoinrg  7110  nnnninfeq  7156  seq3val  10489  seqvalcd  10490  seq3feq2  10501  seq3feq  10503  seqfeq3  10543  seq3shft  10879  efcvgfsum  11707  xpsfeq  12821  upxp  14229  uptx  14231  dvidlemap  14617  dvrecap  14634  peano4nninf  15214  nninfsellemeqinf  15224  nninffeq  15228  refeq  15235
  Copyright terms: Public domain W3C validator