| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfvd | Unicode version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 |
|
| eqfnfvd.2 |
|
| eqfnfvd.3 |
|
| Ref | Expression |
|---|---|
| eqfnfvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2581 |
. 2
|
| 3 | eqfnfvd.1 |
. . 3
| |
| 4 | eqfnfvd.2 |
. . 3
| |
| 5 | eqfnfv 5700 |
. . 3
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 2, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: foeqcnvco 5882 f1eqcocnv 5883 offeq 6195 tfrlem1 6417 frecrdg 6517 updjudhcoinlf 7208 updjudhcoinrg 7209 nnnninfeq 7256 seq3val 10642 seqvalcd 10643 seq3feq2 10658 seq3feq 10662 seqfeq3 10711 ccatlid 11100 ccatrid 11101 ccatass 11102 ccatswrd 11161 swrdccat2 11162 pfxid 11177 ccatpfx 11192 pfxccat1 11193 swrdswrd 11196 cats1un 11212 swrdccatin1 11216 swrdccatin2 11220 pfxccatin12 11224 seq3shft 11264 efcvgfsum 12093 nninfctlemfo 12476 xpsfeq 13292 upxp 14859 uptx 14861 dvidlemap 15278 dvidrelem 15279 dvidsslem 15280 dvrecap 15300 peano4nninf 16145 nninfsellemeqinf 16155 nninffeq 16159 refeq 16169 |
| Copyright terms: Public domain | W3C validator |