| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfvd | Unicode version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 |
|
| eqfnfvd.2 |
|
| eqfnfvd.3 |
|
| Ref | Expression |
|---|---|
| eqfnfvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2603 |
. 2
|
| 3 | eqfnfvd.1 |
. . 3
| |
| 4 | eqfnfvd.2 |
. . 3
| |
| 5 | eqfnfv 5732 |
. . 3
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 2, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: foeqcnvco 5914 f1eqcocnv 5915 offeq 6232 tfrlem1 6454 frecrdg 6554 updjudhcoinlf 7247 updjudhcoinrg 7248 nnnninfeq 7295 seq3val 10682 seqvalcd 10683 seq3feq2 10698 seq3feq 10702 seqfeq3 10751 ccatlid 11141 ccatrid 11142 ccatass 11143 ccatswrd 11202 swrdccat2 11203 pfxid 11218 ccatpfx 11233 pfxccat1 11234 swrdswrd 11237 cats1un 11253 swrdccatin1 11257 swrdccatin2 11261 pfxccatin12 11265 seq3shft 11349 efcvgfsum 12178 nninfctlemfo 12561 xpsfeq 13378 upxp 14946 uptx 14948 dvidlemap 15365 dvidrelem 15366 dvidsslem 15367 dvrecap 15387 peano4nninf 16372 nninfsellemeqinf 16382 nninffeq 16386 refeq 16396 |
| Copyright terms: Public domain | W3C validator |