ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnfvd Unicode version

Theorem eqfnfvd 5596
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
eqfnfvd.1  |-  ( ph  ->  F  Fn  A )
eqfnfvd.2  |-  ( ph  ->  G  Fn  A )
eqfnfvd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
eqfnfvd  |-  ( ph  ->  F  =  G )
Distinct variable groups:    x, A    x, F    x, G    ph, x

Proof of Theorem eqfnfvd
StepHypRef Expression
1 eqfnfvd.3 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
21ralrimiva 2543 . 2  |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
3 eqfnfvd.1 . . 3  |-  ( ph  ->  F  Fn  A )
4 eqfnfvd.2 . . 3  |-  ( ph  ->  G  Fn  A )
5 eqfnfv 5593 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
63, 4, 5syl2anc 409 . 2  |-  ( ph  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
72, 6mpbird 166 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  foeqcnvco  5769  f1eqcocnv  5770  offeq  6074  tfrlem1  6287  frecrdg  6387  updjudhcoinlf  7057  updjudhcoinrg  7058  nnnninfeq  7104  seq3val  10414  seqvalcd  10415  seq3feq2  10426  seq3feq  10428  seqfeq3  10468  seq3shft  10802  efcvgfsum  11630  upxp  13066  uptx  13068  dvidlemap  13454  dvrecap  13471  peano4nninf  14039  nninfsellemeqinf  14049  nninffeq  14053  refeq  14060
  Copyright terms: Public domain W3C validator