| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfvd | Unicode version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 |
|
| eqfnfvd.2 |
|
| eqfnfvd.3 |
|
| Ref | Expression |
|---|---|
| eqfnfvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2579 |
. 2
|
| 3 | eqfnfvd.1 |
. . 3
| |
| 4 | eqfnfvd.2 |
. . 3
| |
| 5 | eqfnfv 5679 |
. . 3
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 2, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: foeqcnvco 5861 f1eqcocnv 5862 offeq 6174 tfrlem1 6396 frecrdg 6496 updjudhcoinlf 7184 updjudhcoinrg 7185 nnnninfeq 7232 seq3val 10607 seqvalcd 10608 seq3feq2 10623 seq3feq 10627 seqfeq3 10676 ccatlid 11065 ccatrid 11066 ccatass 11067 ccatswrd 11126 swrdccat2 11127 pfxid 11140 ccatpfx 11155 pfxccat1 11156 seq3shft 11182 efcvgfsum 12011 nninfctlemfo 12394 xpsfeq 13210 upxp 14777 uptx 14779 dvidlemap 15196 dvidrelem 15197 dvidsslem 15198 dvrecap 15218 peano4nninf 15980 nninfsellemeqinf 15990 nninffeq 15994 refeq 16004 |
| Copyright terms: Public domain | W3C validator |