Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqfnfvd | Unicode version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | |
eqfnfvd.2 | |
eqfnfvd.3 |
Ref | Expression |
---|---|
eqfnfvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 | |
2 | 1 | ralrimiva 2539 | . 2 |
3 | eqfnfvd.1 | . . 3 | |
4 | eqfnfvd.2 | . . 3 | |
5 | eqfnfv 5583 | . . 3 | |
6 | 3, 4, 5 | syl2anc 409 | . 2 |
7 | 2, 6 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: foeqcnvco 5758 f1eqcocnv 5759 offeq 6063 tfrlem1 6276 frecrdg 6376 updjudhcoinlf 7045 updjudhcoinrg 7046 nnnninfeq 7092 seq3val 10393 seqvalcd 10394 seq3feq2 10405 seq3feq 10407 seqfeq3 10447 seq3shft 10780 efcvgfsum 11608 upxp 12912 uptx 12914 dvidlemap 13300 dvrecap 13317 peano4nninf 13886 nninfsellemeqinf 13896 nninffeq 13900 refeq 13907 |
Copyright terms: Public domain | W3C validator |