| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqfnfvd | Unicode version | ||
| Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| eqfnfvd.1 |
|
| eqfnfvd.2 |
|
| eqfnfvd.3 |
|
| Ref | Expression |
|---|---|
| eqfnfvd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfvd.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2570 |
. 2
|
| 3 | eqfnfvd.1 |
. . 3
| |
| 4 | eqfnfvd.2 |
. . 3
| |
| 5 | eqfnfv 5662 |
. . 3
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 2, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: foeqcnvco 5840 f1eqcocnv 5841 offeq 6153 tfrlem1 6375 frecrdg 6475 updjudhcoinlf 7155 updjudhcoinrg 7156 nnnninfeq 7203 seq3val 10569 seqvalcd 10570 seq3feq2 10585 seq3feq 10589 seqfeq3 10638 seq3shft 11020 efcvgfsum 11849 nninfctlemfo 12232 xpsfeq 13047 upxp 14592 uptx 14594 dvidlemap 15011 dvidrelem 15012 dvidsslem 15013 dvrecap 15033 peano4nninf 15737 nninfsellemeqinf 15747 nninffeq 15751 refeq 15759 |
| Copyright terms: Public domain | W3C validator |