ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ominf Unicode version

Theorem ominf 6741
Description: The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express " om is infinite" is  om  ~<_  om which is an instance of domrefg 6613. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 omex 4465 . 2  |-  om  e.  _V
2 domrefg 6613 . 2  |-  ( om  e.  _V  ->  om  ~<_  om )
3 infnfi 6740 . 2  |-  ( om  ~<_  om  ->  -.  om  e.  Fin )
41, 2, 3mp2b 8 1  |-  -.  om  e.  Fin
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1461   _Vcvv 2655   class class class wbr 3893   omcom 4462    ~<_ cdom 6585   Fincfn 6586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-er 6381  df-en 6587  df-dom 6588  df-fin 6589
This theorem is referenced by:  inffiexmid  6751
  Copyright terms: Public domain W3C validator