![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ominf | GIF version |
Description: The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6826. (Contributed by NM, 2-Jun-1998.) |
Ref | Expression |
---|---|
ominf | ⊢ ¬ ω ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4629 | . 2 ⊢ ω ∈ V | |
2 | domrefg 6826 | . 2 ⊢ (ω ∈ V → ω ≼ ω) | |
3 | infnfi 6956 | . 2 ⊢ (ω ≼ ω → ¬ ω ∈ Fin) | |
4 | 1, 2, 3 | mp2b 8 | 1 ⊢ ¬ ω ∈ Fin |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ωcom 4626 ≼ cdom 6798 Fincfn 6799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 |
This theorem is referenced by: inffiexmid 6967 |
Copyright terms: Public domain | W3C validator |