ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ominf GIF version

Theorem ominf 6566
Description: The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6438. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf ¬ ω ∈ Fin

Proof of Theorem ominf
StepHypRef Expression
1 omex 4383 . 2 ω ∈ V
2 domrefg 6438 . 2 (ω ∈ V → ω ≼ ω)
3 infnfi 6565 . 2 (ω ≼ ω → ¬ ω ∈ Fin)
41, 2, 3mp2b 8 1 ¬ ω ∈ Fin
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1436  Vcvv 2615   class class class wbr 3822  ωcom 4380  cdom 6410  Fincfn 6411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-er 6246  df-en 6412  df-dom 6413  df-fin 6414
This theorem is referenced by:  inffiexmid  6576
  Copyright terms: Public domain W3C validator