| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ominf | GIF version | ||
| Description: The set of natural numbers is not finite. Although we supply this theorem because we can, the more natural way to express "ω is infinite" is ω ≼ ω which is an instance of domrefg 6916. (Contributed by NM, 2-Jun-1998.) |
| Ref | Expression |
|---|---|
| ominf | ⊢ ¬ ω ∈ Fin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4684 | . 2 ⊢ ω ∈ V | |
| 2 | domrefg 6916 | . 2 ⊢ (ω ∈ V → ω ≼ ω) | |
| 3 | infnfi 7053 | . 2 ⊢ (ω ≼ ω → ¬ ω ∈ Fin) | |
| 4 | 1, 2, 3 | mp2b 8 | 1 ⊢ ¬ ω ∈ Fin |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 ωcom 4681 ≼ cdom 6884 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 |
| This theorem is referenced by: inffiexmid 7064 |
| Copyright terms: Public domain | W3C validator |