| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemmu | Unicode version | ||
| Description: Lemma for caucvgprpr 7845. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemmu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . 4
| |
| 2 | 1pi 7448 |
. . . . 5
| |
| 3 | 2 | a1i 9 |
. . . 4
|
| 4 | 1, 3 | ffvelcdmd 5729 |
. . 3
|
| 5 | prop 7608 |
. . 3
| |
| 6 | prmu 7611 |
. . 3
| |
| 7 | 4, 5, 6 | 3syl 17 |
. 2
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | 1nq 7499 |
. . . 4
| |
| 10 | addclnq 7508 |
. . . 4
| |
| 11 | 8, 9, 10 | sylancl 413 |
. . 3
|
| 12 | 2 | a1i 9 |
. . . . 5
|
| 13 | simprr 531 |
. . . . . . . 8
| |
| 14 | 4 | adantr 276 |
. . . . . . . . 9
|
| 15 | nqpru 7685 |
. . . . . . . . 9
| |
| 16 | 8, 14, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | 13, 16 | mpbid 147 |
. . . . . . 7
|
| 18 | ltaprg 7752 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 277 |
. . . . . . . 8
|
| 20 | nqprlu 7680 |
. . . . . . . . 9
| |
| 21 | 8, 20 | syl 14 |
. . . . . . . 8
|
| 22 | nqprlu 7680 |
. . . . . . . . 9
| |
| 23 | 9, 22 | mp1i 10 |
. . . . . . . 8
|
| 24 | addcomprg 7711 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | 19, 14, 21, 23, 25 | caovord2d 6129 |
. . . . . . 7
|
| 27 | 17, 26 | mpbid 147 |
. . . . . 6
|
| 28 | df-1nqqs 7484 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | fveq2i 5592 |
. . . . . . . . . . . 12
|
| 30 | rec1nq 7528 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | eqtr3i 2229 |
. . . . . . . . . . 11
|
| 32 | 31 | breq2i 4059 |
. . . . . . . . . 10
|
| 33 | 32 | abbii 2322 |
. . . . . . . . 9
|
| 34 | 31 | breq1i 4058 |
. . . . . . . . . 10
|
| 35 | 34 | abbii 2322 |
. . . . . . . . 9
|
| 36 | 33, 35 | opeq12i 3830 |
. . . . . . . 8
|
| 37 | 36 | oveq2i 5968 |
. . . . . . 7
|
| 38 | 37 | a1i 9 |
. . . . . 6
|
| 39 | addnqpr 7694 |
. . . . . . 7
| |
| 40 | 8, 9, 39 | sylancl 413 |
. . . . . 6
|
| 41 | 27, 38, 40 | 3brtr4d 4083 |
. . . . 5
|
| 42 | fveq2 5589 |
. . . . . . . 8
| |
| 43 | opeq1 3825 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | eceq1d 6669 |
. . . . . . . . . . . 12
|
| 45 | 44 | fveq2d 5593 |
. . . . . . . . . . 11
|
| 46 | 45 | breq2d 4063 |
. . . . . . . . . 10
|
| 47 | 46 | abbidv 2324 |
. . . . . . . . 9
|
| 48 | 45 | breq1d 4061 |
. . . . . . . . . 10
|
| 49 | 48 | abbidv 2324 |
. . . . . . . . 9
|
| 50 | 47, 49 | opeq12d 3833 |
. . . . . . . 8
|
| 51 | 42, 50 | oveq12d 5975 |
. . . . . . 7
|
| 52 | 51 | breq1d 4061 |
. . . . . 6
|
| 53 | 52 | rspcev 2881 |
. . . . 5
|
| 54 | 12, 41, 53 | syl2anc 411 |
. . . 4
|
| 55 | breq2 4055 |
. . . . . . . . 9
| |
| 56 | 55 | abbidv 2324 |
. . . . . . . 8
|
| 57 | breq1 4054 |
. . . . . . . . 9
| |
| 58 | 57 | abbidv 2324 |
. . . . . . . 8
|
| 59 | 56, 58 | opeq12d 3833 |
. . . . . . 7
|
| 60 | 59 | breq2d 4063 |
. . . . . 6
|
| 61 | 60 | rexbidv 2508 |
. . . . 5
|
| 62 | caucvgprpr.lim |
. . . . . . 7
| |
| 63 | 62 | fveq2i 5592 |
. . . . . 6
|
| 64 | nqex 7496 |
. . . . . . . 8
| |
| 65 | 64 | rabex 4196 |
. . . . . . 7
|
| 66 | 64 | rabex 4196 |
. . . . . . 7
|
| 67 | 65, 66 | op2nd 6246 |
. . . . . 6
|
| 68 | 63, 67 | eqtri 2227 |
. . . . 5
|
| 69 | 61, 68 | elrab2 2936 |
. . . 4
|
| 70 | 11, 54, 69 | sylanbrc 417 |
. . 3
|
| 71 | eleq1 2269 |
. . . 4
| |
| 72 | 71 | rspcev 2881 |
. . 3
|
| 73 | 11, 70, 72 | syl2anc 411 |
. 2
|
| 74 | 7, 73 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-iplp 7601 df-iltp 7603 |
| This theorem is referenced by: caucvgprprlemm 7829 |
| Copyright terms: Public domain | W3C validator |