ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu Unicode version

Theorem caucvgprprlemmu 7627
Description: Lemma for caucvgprpr 7644. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemmu  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    F, r, u    t, L    q, p, r, u
Allowed substitution hints:    ph( u, t, k, m, n, r, q, p, l)    A( u, t, k, n, q, p, l)    F( t, k, n, q, p, l)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemmu
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4  |-  ( ph  ->  F : N. --> P. )
2 1pi 7247 . . . . 5  |-  1o  e.  N.
32a1i 9 . . . 4  |-  ( ph  ->  1o  e.  N. )
41, 3ffvelrnd 5615 . . 3  |-  ( ph  ->  ( F `  1o )  e.  P. )
5 prop 7407 . . 3  |-  ( ( F `  1o )  e.  P.  ->  <. ( 1st `  ( F `  1o ) ) ,  ( 2nd `  ( F `
 1o ) )
>.  e.  P. )
6 prmu 7410 . . 3  |-  ( <.
( 1st `  ( F `  1o )
) ,  ( 2nd `  ( F `  1o ) ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
74, 5, 63syl 17 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
8 simprl 521 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  Q. )
9 1nq 7298 . . . 4  |-  1Q  e.  Q.
10 addclnq 7307 . . . 4  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  -> 
( x  +Q  1Q )  e.  Q. )
118, 9, 10sylancl 410 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  Q. )
122a1i 9 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  1o  e.  N. )
13 simprr 522 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  ( 2nd `  ( F `  1o ) ) )
144adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  e.  P. )
15 nqpru 7484 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  ( F `  1o )  e.  P. )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
168, 14, 15syl2anc 409 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
1713, 16mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
18 ltaprg 7551 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1918adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
20 nqprlu 7479 . . . . . . . . 9  |-  ( x  e.  Q.  ->  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  e.  P. )
218, 20syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >.  e.  P. )
22 nqprlu 7479 . . . . . . . . 9  |-  ( 1Q  e.  Q.  ->  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.  e.  P. )
239, 22mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >.  e.  P. )
24 addcomprg 7510 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2524adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P. ) )  ->  (
f  +P.  g )  =  ( g  +P.  f ) )
2619, 14, 21, 23, 25caovord2d 6002 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  <->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) ) )
2717, 26mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) )
28 df-1nqqs 7283 . . . . . . . . . . . . 13  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
2928fveq2i 5483 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
30 rec1nq 7327 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  1Q
3129, 30eqtr3i 2187 . . . . . . . . . . 11  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
3231breq2i 3984 . . . . . . . . . 10  |-  ( p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  p  <Q  1Q )
3332abbii 2280 . . . . . . . . 9  |-  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  1Q }
3431breq1i 3983 . . . . . . . . . 10  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q  <->  1Q  <Q  q )
3534abbii 2280 . . . . . . . . 9  |-  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  1Q  <Q  q }
3633, 35opeq12i 3757 . . . . . . . 8  |-  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.
3736oveq2i 5847 . . . . . . 7  |-  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
3837a1i 9 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >. ) )
39 addnqpr 7493 . . . . . . 7  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
408, 9, 39sylancl 410 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
4127, 38, 403brtr4d 4008 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
42 fveq2 5480 . . . . . . . 8  |-  ( r  =  1o  ->  ( F `  r )  =  ( F `  1o ) )
43 opeq1 3752 . . . . . . . . . . . . 13  |-  ( r  =  1o  ->  <. r ,  1o >.  =  <. 1o ,  1o >. )
4443eceq1d 6528 . . . . . . . . . . . 12  |-  ( r  =  1o  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
4544fveq2d 5484 . . . . . . . . . . 11  |-  ( r  =  1o  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
4645breq2d 3988 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
4746abbidv 2282 . . . . . . . . 9  |-  ( r  =  1o  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
4845breq1d 3986 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q ) )
4948abbidv 2282 . . . . . . . . 9  |-  ( r  =  1o  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } )
5047, 49opeq12d 3760 . . . . . . . 8  |-  ( r  =  1o  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )
5142, 50oveq12d 5854 . . . . . . 7  |-  ( r  =  1o  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5251breq1d 3986 . . . . . 6  |-  ( r  =  1o  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. 
<->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
5352rspcev 2825 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
5412, 41, 53syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
55 breq2 3980 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( p 
<Q  u  <->  p  <Q  ( x  +Q  1Q ) ) )
5655abbidv 2282 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  ( x  +Q  1Q ) } )
57 breq1 3979 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( u 
<Q  q  <->  ( x  +Q  1Q )  <Q  q ) )
5857abbidv 2282 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { q  |  u  <Q  q }  =  { q  |  ( x  +Q  1Q )  <Q  q } )
5956, 58opeq12d 3760 . . . . . . 7  |-  ( u  =  ( x  +Q  1Q )  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
6059breq2d 3988 . . . . . 6  |-  ( u  =  ( x  +Q  1Q )  ->  ( ( ( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
6160rexbidv 2465 . . . . 5  |-  ( u  =  ( x  +Q  1Q )  ->  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
62 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6362fveq2i 5483 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
64 nqex 7295 . . . . . . . 8  |-  Q.  e.  _V
6564rabex 4120 . . . . . . 7  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6664rabex 4120 . . . . . . 7  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6765, 66op2nd 6107 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6863, 67eqtri 2185 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6961, 68elrab2 2880 . . . 4  |-  ( ( x  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( x  +Q  1Q )  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
7011, 54, 69sylanbrc 414 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  ( 2nd `  L ) )
71 eleq1 2227 . . . 4  |-  ( t  =  ( x  +Q  1Q )  ->  ( t  e.  ( 2nd `  L
)  <->  ( x  +Q  1Q )  e.  ( 2nd `  L ) ) )
7271rspcev 2825 . . 3  |-  ( ( ( x  +Q  1Q )  e.  Q.  /\  (
x  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
7311, 70, 72syl2anc 409 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
747, 73rexlimddv 2586 1  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   E.wrex 2443   {crab 2446   <.cop 3573   class class class wbr 3976   -->wf 5178   ` cfv 5182  (class class class)co 5836   1stc1st 6098   2ndc2nd 6099   1oc1o 6368   [cec 6490   N.cnpi 7204    <N clti 7207    ~Q ceq 7211   Q.cnq 7212   1Qc1q 7213    +Q cplq 7214   *Qcrq 7216    <Q cltq 7217   P.cnp 7223    +P. cpp 7225    <P cltp 7227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-2o 6376  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359  df-mq0 7360  df-inp 7398  df-iplp 7400  df-iltp 7402
This theorem is referenced by:  caucvgprprlemm  7628
  Copyright terms: Public domain W3C validator