ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu Unicode version

Theorem caucvgprprlemmu 7878
Description: Lemma for caucvgprpr 7895. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemmu  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    F, r, u    t, L    q, p, r, u
Allowed substitution hints:    ph( u, t, k, m, n, r, q, p, l)    A( u, t, k, n, q, p, l)    F( t, k, n, q, p, l)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemmu
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4  |-  ( ph  ->  F : N. --> P. )
2 1pi 7498 . . . . 5  |-  1o  e.  N.
32a1i 9 . . . 4  |-  ( ph  ->  1o  e.  N. )
41, 3ffvelcdmd 5770 . . 3  |-  ( ph  ->  ( F `  1o )  e.  P. )
5 prop 7658 . . 3  |-  ( ( F `  1o )  e.  P.  ->  <. ( 1st `  ( F `  1o ) ) ,  ( 2nd `  ( F `
 1o ) )
>.  e.  P. )
6 prmu 7661 . . 3  |-  ( <.
( 1st `  ( F `  1o )
) ,  ( 2nd `  ( F `  1o ) ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
74, 5, 63syl 17 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
8 simprl 529 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  Q. )
9 1nq 7549 . . . 4  |-  1Q  e.  Q.
10 addclnq 7558 . . . 4  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  -> 
( x  +Q  1Q )  e.  Q. )
118, 9, 10sylancl 413 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  Q. )
122a1i 9 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  1o  e.  N. )
13 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  ( 2nd `  ( F `  1o ) ) )
144adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  e.  P. )
15 nqpru 7735 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  ( F `  1o )  e.  P. )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
168, 14, 15syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
1713, 16mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
18 ltaprg 7802 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1918adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
20 nqprlu 7730 . . . . . . . . 9  |-  ( x  e.  Q.  ->  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  e.  P. )
218, 20syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >.  e.  P. )
22 nqprlu 7730 . . . . . . . . 9  |-  ( 1Q  e.  Q.  ->  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.  e.  P. )
239, 22mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >.  e.  P. )
24 addcomprg 7761 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2524adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P. ) )  ->  (
f  +P.  g )  =  ( g  +P.  f ) )
2619, 14, 21, 23, 25caovord2d 6174 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  <->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) ) )
2717, 26mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) )
28 df-1nqqs 7534 . . . . . . . . . . . . 13  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
2928fveq2i 5629 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
30 rec1nq 7578 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  1Q
3129, 30eqtr3i 2252 . . . . . . . . . . 11  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
3231breq2i 4090 . . . . . . . . . 10  |-  ( p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  p  <Q  1Q )
3332abbii 2345 . . . . . . . . 9  |-  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  1Q }
3431breq1i 4089 . . . . . . . . . 10  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q  <->  1Q  <Q  q )
3534abbii 2345 . . . . . . . . 9  |-  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  1Q  <Q  q }
3633, 35opeq12i 3861 . . . . . . . 8  |-  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.
3736oveq2i 6011 . . . . . . 7  |-  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
3837a1i 9 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >. ) )
39 addnqpr 7744 . . . . . . 7  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
408, 9, 39sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
4127, 38, 403brtr4d 4114 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
42 fveq2 5626 . . . . . . . 8  |-  ( r  =  1o  ->  ( F `  r )  =  ( F `  1o ) )
43 opeq1 3856 . . . . . . . . . . . . 13  |-  ( r  =  1o  ->  <. r ,  1o >.  =  <. 1o ,  1o >. )
4443eceq1d 6714 . . . . . . . . . . . 12  |-  ( r  =  1o  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
4544fveq2d 5630 . . . . . . . . . . 11  |-  ( r  =  1o  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
4645breq2d 4094 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
4746abbidv 2347 . . . . . . . . 9  |-  ( r  =  1o  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
4845breq1d 4092 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q ) )
4948abbidv 2347 . . . . . . . . 9  |-  ( r  =  1o  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } )
5047, 49opeq12d 3864 . . . . . . . 8  |-  ( r  =  1o  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )
5142, 50oveq12d 6018 . . . . . . 7  |-  ( r  =  1o  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5251breq1d 4092 . . . . . 6  |-  ( r  =  1o  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. 
<->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
5352rspcev 2907 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
5412, 41, 53syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
55 breq2 4086 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( p 
<Q  u  <->  p  <Q  ( x  +Q  1Q ) ) )
5655abbidv 2347 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  ( x  +Q  1Q ) } )
57 breq1 4085 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( u 
<Q  q  <->  ( x  +Q  1Q )  <Q  q ) )
5857abbidv 2347 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { q  |  u  <Q  q }  =  { q  |  ( x  +Q  1Q )  <Q  q } )
5956, 58opeq12d 3864 . . . . . . 7  |-  ( u  =  ( x  +Q  1Q )  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
6059breq2d 4094 . . . . . 6  |-  ( u  =  ( x  +Q  1Q )  ->  ( ( ( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
6160rexbidv 2531 . . . . 5  |-  ( u  =  ( x  +Q  1Q )  ->  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
62 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6362fveq2i 5629 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
64 nqex 7546 . . . . . . . 8  |-  Q.  e.  _V
6564rabex 4227 . . . . . . 7  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6664rabex 4227 . . . . . . 7  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6765, 66op2nd 6291 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6863, 67eqtri 2250 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6961, 68elrab2 2962 . . . 4  |-  ( ( x  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( x  +Q  1Q )  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
7011, 54, 69sylanbrc 417 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  ( 2nd `  L ) )
71 eleq1 2292 . . . 4  |-  ( t  =  ( x  +Q  1Q )  ->  ( t  e.  ( 2nd `  L
)  <->  ( x  +Q  1Q )  e.  ( 2nd `  L ) ) )
7271rspcev 2907 . . 3  |-  ( ( ( x  +Q  1Q )  e.  Q.  /\  (
x  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
7311, 70, 72syl2anc 411 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
747, 73rexlimddv 2653 1  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4082   -->wf 5313   ` cfv 5317  (class class class)co 6000   1stc1st 6282   2ndc2nd 6283   1oc1o 6553   [cec 6676   N.cnpi 7455    <N clti 7458    ~Q ceq 7462   Q.cnq 7463   1Qc1q 7464    +Q cplq 7465   *Qcrq 7467    <Q cltq 7468   P.cnp 7474    +P. cpp 7476    <P cltp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-iltp 7653
This theorem is referenced by:  caucvgprprlemm  7879
  Copyright terms: Public domain W3C validator