ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu Unicode version

Theorem caucvgprprlemmu 7471
Description: Lemma for caucvgprpr 7488. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemmu  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    F, r, u    t, L    q, p, r, u
Allowed substitution hints:    ph( u, t, k, m, n, r, q, p, l)    A( u, t, k, n, q, p, l)    F( t, k, n, q, p, l)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemmu
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4  |-  ( ph  ->  F : N. --> P. )
2 1pi 7091 . . . . 5  |-  1o  e.  N.
32a1i 9 . . . 4  |-  ( ph  ->  1o  e.  N. )
41, 3ffvelrnd 5524 . . 3  |-  ( ph  ->  ( F `  1o )  e.  P. )
5 prop 7251 . . 3  |-  ( ( F `  1o )  e.  P.  ->  <. ( 1st `  ( F `  1o ) ) ,  ( 2nd `  ( F `
 1o ) )
>.  e.  P. )
6 prmu 7254 . . 3  |-  ( <.
( 1st `  ( F `  1o )
) ,  ( 2nd `  ( F `  1o ) ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
74, 5, 63syl 17 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
8 simprl 505 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  Q. )
9 1nq 7142 . . . 4  |-  1Q  e.  Q.
10 addclnq 7151 . . . 4  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  -> 
( x  +Q  1Q )  e.  Q. )
118, 9, 10sylancl 409 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  Q. )
122a1i 9 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  1o  e.  N. )
13 simprr 506 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  ( 2nd `  ( F `  1o ) ) )
144adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  e.  P. )
15 nqpru 7328 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  ( F `  1o )  e.  P. )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
168, 14, 15syl2anc 408 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
1713, 16mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
18 ltaprg 7395 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1918adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
20 nqprlu 7323 . . . . . . . . 9  |-  ( x  e.  Q.  ->  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  e.  P. )
218, 20syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >.  e.  P. )
22 nqprlu 7323 . . . . . . . . 9  |-  ( 1Q  e.  Q.  ->  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.  e.  P. )
239, 22mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >.  e.  P. )
24 addcomprg 7354 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2524adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P. ) )  ->  (
f  +P.  g )  =  ( g  +P.  f ) )
2619, 14, 21, 23, 25caovord2d 5908 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  <->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) ) )
2717, 26mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) )
28 df-1nqqs 7127 . . . . . . . . . . . . 13  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
2928fveq2i 5392 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
30 rec1nq 7171 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  1Q
3129, 30eqtr3i 2140 . . . . . . . . . . 11  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
3231breq2i 3907 . . . . . . . . . 10  |-  ( p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  p  <Q  1Q )
3332abbii 2233 . . . . . . . . 9  |-  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  1Q }
3431breq1i 3906 . . . . . . . . . 10  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q  <->  1Q  <Q  q )
3534abbii 2233 . . . . . . . . 9  |-  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  1Q  <Q  q }
3633, 35opeq12i 3680 . . . . . . . 8  |-  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.
3736oveq2i 5753 . . . . . . 7  |-  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
3837a1i 9 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >. ) )
39 addnqpr 7337 . . . . . . 7  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
408, 9, 39sylancl 409 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
4127, 38, 403brtr4d 3930 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
42 fveq2 5389 . . . . . . . 8  |-  ( r  =  1o  ->  ( F `  r )  =  ( F `  1o ) )
43 opeq1 3675 . . . . . . . . . . . . 13  |-  ( r  =  1o  ->  <. r ,  1o >.  =  <. 1o ,  1o >. )
4443eceq1d 6433 . . . . . . . . . . . 12  |-  ( r  =  1o  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
4544fveq2d 5393 . . . . . . . . . . 11  |-  ( r  =  1o  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
4645breq2d 3911 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
4746abbidv 2235 . . . . . . . . 9  |-  ( r  =  1o  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
4845breq1d 3909 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q ) )
4948abbidv 2235 . . . . . . . . 9  |-  ( r  =  1o  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } )
5047, 49opeq12d 3683 . . . . . . . 8  |-  ( r  =  1o  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )
5142, 50oveq12d 5760 . . . . . . 7  |-  ( r  =  1o  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5251breq1d 3909 . . . . . 6  |-  ( r  =  1o  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. 
<->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
5352rspcev 2763 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
5412, 41, 53syl2anc 408 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
55 breq2 3903 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( p 
<Q  u  <->  p  <Q  ( x  +Q  1Q ) ) )
5655abbidv 2235 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  ( x  +Q  1Q ) } )
57 breq1 3902 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( u 
<Q  q  <->  ( x  +Q  1Q )  <Q  q ) )
5857abbidv 2235 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { q  |  u  <Q  q }  =  { q  |  ( x  +Q  1Q )  <Q  q } )
5956, 58opeq12d 3683 . . . . . . 7  |-  ( u  =  ( x  +Q  1Q )  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
6059breq2d 3911 . . . . . 6  |-  ( u  =  ( x  +Q  1Q )  ->  ( ( ( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
6160rexbidv 2415 . . . . 5  |-  ( u  =  ( x  +Q  1Q )  ->  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
62 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6362fveq2i 5392 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
64 nqex 7139 . . . . . . . 8  |-  Q.  e.  _V
6564rabex 4042 . . . . . . 7  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6664rabex 4042 . . . . . . 7  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6765, 66op2nd 6013 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6863, 67eqtri 2138 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6961, 68elrab2 2816 . . . 4  |-  ( ( x  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( x  +Q  1Q )  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
7011, 54, 69sylanbrc 413 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  ( 2nd `  L ) )
71 eleq1 2180 . . . 4  |-  ( t  =  ( x  +Q  1Q )  ->  ( t  e.  ( 2nd `  L
)  <->  ( x  +Q  1Q )  e.  ( 2nd `  L ) ) )
7271rspcev 2763 . . 3  |-  ( ( ( x  +Q  1Q )  e.  Q.  /\  (
x  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
7311, 70, 72syl2anc 408 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
747, 73rexlimddv 2531 1  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   {crab 2397   <.cop 3500   class class class wbr 3899   -->wf 5089   ` cfv 5093  (class class class)co 5742   1stc1st 6004   2ndc2nd 6005   1oc1o 6274   [cec 6395   N.cnpi 7048    <N clti 7051    ~Q ceq 7055   Q.cnq 7056   1Qc1q 7057    +Q cplq 7058   *Qcrq 7060    <Q cltq 7061   P.cnp 7067    +P. cpp 7069    <P cltp 7071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-iplp 7244  df-iltp 7246
This theorem is referenced by:  caucvgprprlemm  7472
  Copyright terms: Public domain W3C validator