| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemmu | Unicode version | ||
| Description: Lemma for caucvgprpr 7824. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemmu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . 4
| |
| 2 | 1pi 7427 |
. . . . 5
| |
| 3 | 2 | a1i 9 |
. . . 4
|
| 4 | 1, 3 | ffvelcdmd 5715 |
. . 3
|
| 5 | prop 7587 |
. . 3
| |
| 6 | prmu 7590 |
. . 3
| |
| 7 | 4, 5, 6 | 3syl 17 |
. 2
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | 1nq 7478 |
. . . 4
| |
| 10 | addclnq 7487 |
. . . 4
| |
| 11 | 8, 9, 10 | sylancl 413 |
. . 3
|
| 12 | 2 | a1i 9 |
. . . . 5
|
| 13 | simprr 531 |
. . . . . . . 8
| |
| 14 | 4 | adantr 276 |
. . . . . . . . 9
|
| 15 | nqpru 7664 |
. . . . . . . . 9
| |
| 16 | 8, 14, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | 13, 16 | mpbid 147 |
. . . . . . 7
|
| 18 | ltaprg 7731 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 277 |
. . . . . . . 8
|
| 20 | nqprlu 7659 |
. . . . . . . . 9
| |
| 21 | 8, 20 | syl 14 |
. . . . . . . 8
|
| 22 | nqprlu 7659 |
. . . . . . . . 9
| |
| 23 | 9, 22 | mp1i 10 |
. . . . . . . 8
|
| 24 | addcomprg 7690 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 277 |
. . . . . . . 8
|
| 26 | 19, 14, 21, 23, 25 | caovord2d 6115 |
. . . . . . 7
|
| 27 | 17, 26 | mpbid 147 |
. . . . . 6
|
| 28 | df-1nqqs 7463 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | fveq2i 5578 |
. . . . . . . . . . . 12
|
| 30 | rec1nq 7507 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | eqtr3i 2227 |
. . . . . . . . . . 11
|
| 32 | 31 | breq2i 4051 |
. . . . . . . . . 10
|
| 33 | 32 | abbii 2320 |
. . . . . . . . 9
|
| 34 | 31 | breq1i 4050 |
. . . . . . . . . 10
|
| 35 | 34 | abbii 2320 |
. . . . . . . . 9
|
| 36 | 33, 35 | opeq12i 3823 |
. . . . . . . 8
|
| 37 | 36 | oveq2i 5954 |
. . . . . . 7
|
| 38 | 37 | a1i 9 |
. . . . . 6
|
| 39 | addnqpr 7673 |
. . . . . . 7
| |
| 40 | 8, 9, 39 | sylancl 413 |
. . . . . 6
|
| 41 | 27, 38, 40 | 3brtr4d 4075 |
. . . . 5
|
| 42 | fveq2 5575 |
. . . . . . . 8
| |
| 43 | opeq1 3818 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | eceq1d 6655 |
. . . . . . . . . . . 12
|
| 45 | 44 | fveq2d 5579 |
. . . . . . . . . . 11
|
| 46 | 45 | breq2d 4055 |
. . . . . . . . . 10
|
| 47 | 46 | abbidv 2322 |
. . . . . . . . 9
|
| 48 | 45 | breq1d 4053 |
. . . . . . . . . 10
|
| 49 | 48 | abbidv 2322 |
. . . . . . . . 9
|
| 50 | 47, 49 | opeq12d 3826 |
. . . . . . . 8
|
| 51 | 42, 50 | oveq12d 5961 |
. . . . . . 7
|
| 52 | 51 | breq1d 4053 |
. . . . . 6
|
| 53 | 52 | rspcev 2876 |
. . . . 5
|
| 54 | 12, 41, 53 | syl2anc 411 |
. . . 4
|
| 55 | breq2 4047 |
. . . . . . . . 9
| |
| 56 | 55 | abbidv 2322 |
. . . . . . . 8
|
| 57 | breq1 4046 |
. . . . . . . . 9
| |
| 58 | 57 | abbidv 2322 |
. . . . . . . 8
|
| 59 | 56, 58 | opeq12d 3826 |
. . . . . . 7
|
| 60 | 59 | breq2d 4055 |
. . . . . 6
|
| 61 | 60 | rexbidv 2506 |
. . . . 5
|
| 62 | caucvgprpr.lim |
. . . . . . 7
| |
| 63 | 62 | fveq2i 5578 |
. . . . . 6
|
| 64 | nqex 7475 |
. . . . . . . 8
| |
| 65 | 64 | rabex 4187 |
. . . . . . 7
|
| 66 | 64 | rabex 4187 |
. . . . . . 7
|
| 67 | 65, 66 | op2nd 6232 |
. . . . . 6
|
| 68 | 63, 67 | eqtri 2225 |
. . . . 5
|
| 69 | 61, 68 | elrab2 2931 |
. . . 4
|
| 70 | 11, 54, 69 | sylanbrc 417 |
. . 3
|
| 71 | eleq1 2267 |
. . . 4
| |
| 72 | 71 | rspcev 2876 |
. . 3
|
| 73 | 11, 70, 72 | syl2anc 411 |
. 2
|
| 74 | 7, 73 | rexlimddv 2627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-iplp 7580 df-iltp 7582 |
| This theorem is referenced by: caucvgprprlemm 7808 |
| Copyright terms: Public domain | W3C validator |