ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemmu Unicode version

Theorem caucvgprprlemmu 7828
Description: Lemma for caucvgprpr 7845. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemmu  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    F, r, u    t, L    q, p, r, u
Allowed substitution hints:    ph( u, t, k, m, n, r, q, p, l)    A( u, t, k, n, q, p, l)    F( t, k, n, q, p, l)    L( u, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemmu
Dummy variables  f  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.f . . . 4  |-  ( ph  ->  F : N. --> P. )
2 1pi 7448 . . . . 5  |-  1o  e.  N.
32a1i 9 . . . 4  |-  ( ph  ->  1o  e.  N. )
41, 3ffvelcdmd 5729 . . 3  |-  ( ph  ->  ( F `  1o )  e.  P. )
5 prop 7608 . . 3  |-  ( ( F `  1o )  e.  P.  ->  <. ( 1st `  ( F `  1o ) ) ,  ( 2nd `  ( F `
 1o ) )
>.  e.  P. )
6 prmu 7611 . . 3  |-  ( <.
( 1st `  ( F `  1o )
) ,  ( 2nd `  ( F `  1o ) ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
74, 5, 63syl 17 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 2nd `  ( F `  1o ) ) )
8 simprl 529 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  Q. )
9 1nq 7499 . . . 4  |-  1Q  e.  Q.
10 addclnq 7508 . . . 4  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  -> 
( x  +Q  1Q )  e.  Q. )
118, 9, 10sylancl 413 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  Q. )
122a1i 9 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  1o  e.  N. )
13 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  x  e.  ( 2nd `  ( F `  1o ) ) )
144adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  e.  P. )
15 nqpru 7685 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  ( F `  1o )  e.  P. )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
168, 14, 15syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  e.  ( 2nd `  ( F `
 1o ) )  <-> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
)
1713, 16mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >. )
18 ltaprg 7752 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
1918adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
20 nqprlu 7680 . . . . . . . . 9  |-  ( x  e.  Q.  ->  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  e.  P. )
218, 20syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  x } ,  {
q  |  x  <Q  q } >.  e.  P. )
22 nqprlu 7680 . . . . . . . . 9  |-  ( 1Q  e.  Q.  ->  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.  e.  P. )
239, 22mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >.  e.  P. )
24 addcomprg 7711 . . . . . . . . 9  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
2524adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o ) ) ) )  /\  ( f  e. 
P.  /\  g  e.  P. ) )  ->  (
f  +P.  g )  =  ( g  +P.  f ) )
2619, 14, 21, 23, 25caovord2d 6129 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  <P  <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  <->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) ) )
2717, 26mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )  <P  ( <. { p  |  p  <Q  x } ,  { q  |  x 
<Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. ) )
28 df-1nqqs 7484 . . . . . . . . . . . . 13  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
2928fveq2i 5592 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
30 rec1nq 7528 . . . . . . . . . . . 12  |-  ( *Q
`  1Q )  =  1Q
3129, 30eqtr3i 2229 . . . . . . . . . . 11  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
3231breq2i 4059 . . . . . . . . . 10  |-  ( p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <->  p  <Q  1Q )
3332abbii 2322 . . . . . . . . 9  |-  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  1Q }
3431breq1i 4058 . . . . . . . . . 10  |-  ( ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q  <->  1Q  <Q  q )
3534abbii 2322 . . . . . . . . 9  |-  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  1Q  <Q  q }
3633, 35opeq12i 3830 . . . . . . . 8  |-  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >.
3736oveq2i 5968 . . . . . . 7  |-  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. )  =  ( ( F `  1o )  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
3837a1i 9 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  1Q } ,  {
q  |  1Q  <Q  q } >. ) )
39 addnqpr 7694 . . . . . . 7  |-  ( ( x  e.  Q.  /\  1Q  e.  Q. )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
408, 9, 39sylancl 413 . . . . . 6  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  <. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>.  =  ( <. { p  |  p  <Q  x } ,  { q  |  x  <Q  q } >.  +P.  <. { p  |  p  <Q  1Q } ,  { q  |  1Q  <Q  q } >. )
)
4127, 38, 403brtr4d 4083 . . . . 5  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
42 fveq2 5589 . . . . . . . 8  |-  ( r  =  1o  ->  ( F `  r )  =  ( F `  1o ) )
43 opeq1 3825 . . . . . . . . . . . . 13  |-  ( r  =  1o  ->  <. r ,  1o >.  =  <. 1o ,  1o >. )
4443eceq1d 6669 . . . . . . . . . . . 12  |-  ( r  =  1o  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
4544fveq2d 5593 . . . . . . . . . . 11  |-  ( r  =  1o  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
4645breq2d 4063 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
4746abbidv 2324 . . . . . . . . 9  |-  ( r  =  1o  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } )
4845breq1d 4061 . . . . . . . . . 10  |-  ( r  =  1o  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q ) )
4948abbidv 2324 . . . . . . . . 9  |-  ( r  =  1o  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } )
5047, 49opeq12d 3833 . . . . . . . 8  |-  ( r  =  1o  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )
5142, 50oveq12d 5975 . . . . . . 7  |-  ( r  =  1o  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 1o )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5251breq1d 4061 . . . . . 6  |-  ( r  =  1o  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. 
<->  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
5352rspcev 2881 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )  ->  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
5412, 41, 53syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
55 breq2 4055 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( p 
<Q  u  <->  p  <Q  ( x  +Q  1Q ) ) )
5655abbidv 2324 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { p  |  p  <Q  u }  =  { p  |  p 
<Q  ( x  +Q  1Q ) } )
57 breq1 4054 . . . . . . . . 9  |-  ( u  =  ( x  +Q  1Q )  ->  ( u 
<Q  q  <->  ( x  +Q  1Q )  <Q  q ) )
5857abbidv 2324 . . . . . . . 8  |-  ( u  =  ( x  +Q  1Q )  ->  { q  |  u  <Q  q }  =  { q  |  ( x  +Q  1Q )  <Q  q } )
5956, 58opeq12d 3833 . . . . . . 7  |-  ( u  =  ( x  +Q  1Q )  ->  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >.  =  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. )
6059breq2d 4063 . . . . . 6  |-  ( u  =  ( x  +Q  1Q )  ->  ( ( ( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
6160rexbidv 2508 . . . . 5  |-  ( u  =  ( x  +Q  1Q )  ->  ( E. r  e.  N.  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >.  <->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q )  <Q  q }
>. ) )
62 caucvgprpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6362fveq2i 5592 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
64 nqex 7496 . . . . . . . 8  |-  Q.  e.  _V
6564rabex 4196 . . . . . . 7  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6664rabex 4196 . . . . . . 7  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6765, 66op2nd 6246 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6863, 67eqtri 2227 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. }
6961, 68elrab2 2936 . . . 4  |-  ( ( x  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( x  +Q  1Q )  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  ( x  +Q  1Q ) } ,  { q  |  ( x  +Q  1Q ) 
<Q  q } >. )
)
7011, 54, 69sylanbrc 417 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  -> 
( x  +Q  1Q )  e.  ( 2nd `  L ) )
71 eleq1 2269 . . . 4  |-  ( t  =  ( x  +Q  1Q )  ->  ( t  e.  ( 2nd `  L
)  <->  ( x  +Q  1Q )  e.  ( 2nd `  L ) ) )
7271rspcev 2881 . . 3  |-  ( ( ( x  +Q  1Q )  e.  Q.  /\  (
x  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
7311, 70, 72syl2anc 411 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 2nd `  ( F `  1o )
) ) )  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
747, 73rexlimddv 2629 1  |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {cab 2192   A.wral 2485   E.wrex 2486   {crab 2489   <.cop 3641   class class class wbr 4051   -->wf 5276   ` cfv 5280  (class class class)co 5957   1stc1st 6237   2ndc2nd 6238   1oc1o 6508   [cec 6631   N.cnpi 7405    <N clti 7408    ~Q ceq 7412   Q.cnq 7413   1Qc1q 7414    +Q cplq 7415   *Qcrq 7417    <Q cltq 7418   P.cnp 7424    +P. cpp 7426    <P cltp 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-iplp 7601  df-iltp 7603
This theorem is referenced by:  caucvgprprlemm  7829
  Copyright terms: Public domain W3C validator