ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i GIF version

Theorem opeq12i 3810
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 3807 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 426 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cop 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628
This theorem is referenced by:  addpinq1  7526  genipv  7571  ltexpri  7675  recexpr  7700  cauappcvgprlemladdru  7718  cauappcvgprlemladdrl  7719  cauappcvgpr  7724  caucvgprlemcl  7738  caucvgprlemladdrl  7740  caucvgpr  7744  caucvgprprlemval  7750  caucvgprprlemnbj  7755  caucvgprprlemmu  7757  caucvgprprlemclphr  7767  caucvgprprlemaddq  7770  caucvgprprlem1  7771  caucvgprprlem2  7772  caucvgsr  7864  pitonnlem1  7907  axi2m1  7937  axcaucvg  7962
  Copyright terms: Public domain W3C validator