ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i GIF version

Theorem opeq12i 3783
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 3780 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 426 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cop 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-sn 3598  df-pr 3599  df-op 3601
This theorem is referenced by:  addpinq1  7462  genipv  7507  ltexpri  7611  recexpr  7636  cauappcvgprlemladdru  7654  cauappcvgprlemladdrl  7655  cauappcvgpr  7660  caucvgprlemcl  7674  caucvgprlemladdrl  7676  caucvgpr  7680  caucvgprprlemval  7686  caucvgprprlemnbj  7691  caucvgprprlemmu  7693  caucvgprprlemclphr  7703  caucvgprprlemaddq  7706  caucvgprprlem1  7707  caucvgprprlem2  7708  caucvgsr  7800  pitonnlem1  7843  axi2m1  7873  axcaucvg  7898
  Copyright terms: Public domain W3C validator