Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq12i | GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
opeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | opeq12 3767 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
4 | 1, 2, 3 | mp2an 424 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: addpinq1 7426 genipv 7471 ltexpri 7575 recexpr 7600 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 cauappcvgpr 7624 caucvgprlemcl 7638 caucvgprlemladdrl 7640 caucvgpr 7644 caucvgprprlemval 7650 caucvgprprlemnbj 7655 caucvgprprlemmu 7657 caucvgprprlemclphr 7667 caucvgprprlemaddq 7670 caucvgprprlem1 7671 caucvgprprlem2 7672 caucvgsr 7764 pitonnlem1 7807 axi2m1 7837 axcaucvg 7862 |
Copyright terms: Public domain | W3C validator |