![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12i | GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
opeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
opeq12i | ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | opeq12 3776 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 〈cop 3592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 |
This theorem is referenced by: addpinq1 7438 genipv 7483 ltexpri 7587 recexpr 7612 cauappcvgprlemladdru 7630 cauappcvgprlemladdrl 7631 cauappcvgpr 7636 caucvgprlemcl 7650 caucvgprlemladdrl 7652 caucvgpr 7656 caucvgprprlemval 7662 caucvgprprlemnbj 7667 caucvgprprlemmu 7669 caucvgprprlemclphr 7679 caucvgprprlemaddq 7682 caucvgprprlem1 7683 caucvgprprlem2 7684 caucvgsr 7776 pitonnlem1 7819 axi2m1 7849 axcaucvg 7874 |
Copyright terms: Public domain | W3C validator |