ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i GIF version

Theorem opeq12i 3823
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 3820 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 426 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cop 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641
This theorem is referenced by:  addpinq1  7576  genipv  7621  ltexpri  7725  recexpr  7750  cauappcvgprlemladdru  7768  cauappcvgprlemladdrl  7769  cauappcvgpr  7774  caucvgprlemcl  7788  caucvgprlemladdrl  7790  caucvgpr  7794  caucvgprprlemval  7800  caucvgprprlemnbj  7805  caucvgprprlemmu  7807  caucvgprprlemclphr  7817  caucvgprprlemaddq  7820  caucvgprprlem1  7821  caucvgprprlem2  7822  caucvgsr  7914  pitonnlem1  7957  axi2m1  7987  axcaucvg  8012
  Copyright terms: Public domain W3C validator